Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
Transl Psychiatry. 2021 Apr 1;11(1):200. doi: 10.1038/s41398-021-01318-6.
Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.
抗抑郁剂量的氯胺酮可迅速促进前额叶和海马回路中的突触可塑性,并改变神经元功能。然而,大多数研究都是在动物模型中证明了这些效果,而在人类中的转化研究则很少。最近的一项动物研究表明,氯胺酮在给药后 1 小时内恢复了海马 CA1 区的树突棘。为了将这些结果转化为人类,这项随机、双盲、安慰剂对照、交叉磁共振成像(MRI)研究评估了氯胺酮对健康志愿者海马亚区测量的快速神经可塑性影响。分析了 S-氯胺酮与安慰剂的数据,并根据脑源性神经营养因子(BDNF)基因型对数据进行了分组。线性混合模型显示,与安慰剂相比,氯胺酮治疗后总体海马亚区体积明显更大(p=0.009)(LS 均值差异=0.008,标准误差=0.003)。事后检验并未将效应归因于特定的亚区(所有 p>0.05)。在左侧海马 CA1 区观察到趋势性的体积增加(p=0.076),而在右侧海马-杏仁核过渡区(HATA)观察到趋势性的体积减少(p=0.067)。基因型或基因型-药物相互作用均未显著影响结果(所有 p>0.7)。该研究为氯胺酮对人类海马亚区体积具有短期影响提供了证据。这些结果与抑郁症动物模型中的先前发现相吻合,表明氯胺酮对海马结构具有促神经可塑性作用,并强调了海马作为氯胺酮作用机制关键区域的重要性。