Suppr超能文献

缺陷型 ZrS 纳米带高效光催化生成过氧化氢并选择性氧化苄胺。

Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS nanobelts.

机构信息

SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore.

出版信息

Nat Commun. 2021 Apr 1;12(1):2039. doi: 10.1038/s41467-021-22394-8.

Abstract

Photocatalytic hydrogen peroxide (HO) generation represents a promising approach for artificial photosynthesis. However, the sluggish half-reaction of water oxidation significantly limits the efficiency of HO generation. Here, a benzylamine oxidation with more favorable thermodynamics is employed as the half-reaction to couple with HO generation in water by using defective zirconium trisulfide (ZrS) nanobelts as a photocatalyst. The ZrS nanobelts with disulfide (S) and sulfide anion (S) vacancies exhibit an excellent photocatalytic performance for HO generation and simultaneous oxidation of benzylamine to benzonitrile with a high selectivity of >99%. More importantly, the S and S vacancies can be separately introduced into ZrS nanobelts in a controlled manner. The S vacancies are further revealed to facilitate the separation of photogenerated charge carriers. The S vacancies can significantly improve the electron conduction, hole extraction, and kinetics of benzylamine oxidation. As a result, the use of defective ZrS nanobelts yields a high production rate of 78.1 ± 1.5 and 32.0 ± 1.2 μmol h for HO and benzonitrile, respectively, under a simulated sunlight irradiation.

摘要

光催化过氧化氢 (HO) 产生代表了一种有前途的人工光合作用方法。然而,水氧化的缓慢半反应极大地限制了 HO 产生的效率。在这里,采用热力学上更有利的苄胺氧化作为半反应,通过使用缺陷型三硫化锆 (ZrS) 纳米带作为光催化剂,在水中与 HO 产生相耦合。具有二硫键 (S) 和硫阴离子 (S) 空位的 ZrS 纳米带在 HO 产生和苄胺同时氧化为苯甲腈方面表现出优异的光催化性能,选择性>99%。更重要的是,S 和 S 空位可以以可控的方式分别引入到 ZrS 纳米带中。S 空位被进一步揭示有助于光生载流子的分离。S 空位可以显著提高电子传导、空穴提取和苄胺氧化动力学。因此,在模拟太阳光照射下,使用缺陷型 ZrS 纳米带分别产生了 78.1±1.5 和 32.0±1.2 μmol h 的高 HO 和苯甲腈生成速率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验