Suppr超能文献

无机半导体整体水氧化的光合作用。

Overall photosynthesis of HO by an inorganic semiconductor.

机构信息

Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China.

Department of Applied Chemistry, Faculty of Science and Technology, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo, 112-8551, Japan.

出版信息

Nat Commun. 2022 Feb 24;13(1):1034. doi: 10.1038/s41467-022-28686-x.

Abstract

Artificial photosynthesis of HO using earth-abundant water and oxygen is a promising approach to achieve scalable and cost-effective solar fuel production. Recent studies on this topic have made significant progress, yet are mainly focused on using  organic polymers. This set of photocatalysts is susceptible to potent oxidants (e.g. hydroxyl radical) that are inevitably formed during HO generation. Here, we report an inorganic Mo-doped faceted BiVO (Mo:BiVO) system that is resistant to radical oxidation and exhibits a high overall HO photosynthesis efficiency among inorganic photocatalysts, with an apparent quantum yield of 1.2% and a solar-to-chemical conversion efficiency of 0.29% at full spectrum, as well as an apparent quantum yield of 5.8% at 420 nm. The surface-reaction kinetics and selectivity of Mo:BiVO were tuned by precisely loading CoO and Pd on {110} and {010} facets, respectively. Time-resolved spectroscopic investigations of photocarriers suggest that depositing select cocatalysts on distinct facet tailored the interfacial energetics between {110} and {010} facets and enhanced charge separation in Mo:BiVO, therefore overcoming a key challenge in developing efficient inorganic photocatalysts. The promising HO generation efficiency achieved by delicate design of catalyst spatial and electronic structures sheds light on applying robust inorganic particulate photocatalysts to artificial photosynthesis of HO.

摘要

使用丰富的水和氧气通过人工光合作用产生 HO 是实现可扩展和具有成本效益的太阳能燃料生产的一种很有前途的方法。最近关于这个主题的研究取得了重大进展,但主要集中在使用有机聚合物。这组光催化剂容易受到在 HO 生成过程中不可避免形成的强氧化剂(例如羟基自由基)的影响。在这里,我们报告了一种无机 Mo 掺杂的各向异性 BiVO(Mo:BiVO)体系,它能抵抗自由基氧化,在无机光催化剂中表现出高的整体 HO 光合作用效率,在全光谱下的表观量子效率为 1.2%,太阳能-化学转换效率为 0.29%,在 420nm 下的表观量子效率为 5.8%。通过在{110}和{010}晶面上分别精确负载 CoO 和 Pd,调节了 Mo:BiVO 的表面反应动力学和选择性。光载流子的时间分辨光谱研究表明,在不同晶面选择性沉积助催化剂可以调整{110}和{010}晶面之间的界面能,增强 Mo:BiVO 中的电荷分离,从而克服了开发高效无机光催化剂的一个关键挑战。通过精细设计催化剂的空间和电子结构,实现了有希望的 HO 生成效率,为将坚固的无机颗粒光催化剂应用于 HO 的人工光合作用提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9a/8873311/a0994d413b4f/41467_2022_28686_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验