Suppr超能文献

基于微生物-疾病关联预测寻找结肠癌和结直肠癌相关微生物

Finding Colon Cancer- and Colorectal Cancer-Related Microbes Based on Microbe-Disease Association Prediction.

作者信息

Chen Yu, Sun Hongjian, Sun Mengzhe, Shi Changguo, Sun Hongmei, Shi Xiaoli, Ji Binbin, Cui Jinpeng

机构信息

The Cancer Hospital of Jia Mu Si, Jiamusi, China.

Oncological Surgery, The Central Hospital of Jia Mu Si, Jiamusi, China.

出版信息

Front Microbiol. 2021 Mar 16;12:650056. doi: 10.3389/fmicb.2021.650056. eCollection 2021.

Abstract

Microbes are closely associated with the formation and development of diseases. The identification of the potential associations between microbes and diseases can boost the understanding of various complex diseases. Wet experiments applied to microbe-disease association (MDA) identification are costly and time-consuming. In this manuscript, we developed a novel computational model, NLLMDA, to find unobserved MDAs, especially for colon cancer and colorectal carcinoma. NLLMDA integrated negative MDA selection, linear neighborhood similarity, label propagation, information integration, and known biological data. The Gaussian association profile (GAP) similarity of microbes and GAPs similarity and symptom similarity of diseases were firstly computed. Secondly, linear neighborhood method was then applied to the above computed similarity matrices to obtain more stable performance. Thirdly, negative MDA samples were selected, and the label propagation algorithm was used to score for microbe-disease pairs. The final association probabilities can be computed based on the information integration method. NLLMDA was compared with the other five classical MDA methods and obtained the highest area under the curve (AUC) value of 0.9031 and 0.9335 on cross-validations of diseases and microbe-disease pairs. The results suggest that NLLMDA was an effective prediction method. More importantly, we found that Acidobacteriaceae may have a close link with colon cancer and may densely associate with colorectal carcinoma.

摘要

微生物与疾病的形成和发展密切相关。识别微生物与疾病之间的潜在关联有助于增进对各种复杂疾病的理解。用于微生物-疾病关联(MDA)识别的湿实验成本高且耗时。在本论文中,我们开发了一种新型计算模型NLLMDA,用于发现未观察到的MDA,特别是针对结肠癌和直肠癌。NLLMDA整合了负MDA选择、线性邻域相似性、标签传播、信息整合和已知生物学数据。首先计算微生物的高斯关联概况(GAP)相似性以及疾病的GAP相似性和症状相似性。其次,将线性邻域方法应用于上述计算出的相似性矩阵,以获得更稳定的性能。第三,选择负MDA样本,并使用标签传播算法对微生物-疾病对进行评分。最终的关联概率可基于信息整合方法计算得出。将NLLMDA与其他五种经典MDA方法进行比较,在疾病和微生物-疾病对的交叉验证中分别获得了最高的曲线下面积(AUC)值,分别为0.9031和0.9335。结果表明NLLMDA是一种有效的预测方法。更重要的是,我们发现酸杆菌科可能与结肠癌有密切联系,并且可能与直肠癌密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c4/8007907/c305dd491ced/fmicb-12-650056-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验