Avants Brian B, Tustison Nicholas J, Stone James R
Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA.
Nat Comput Sci. 2021 Feb;1(2):143-152. doi: 10.1038/s43588-021-00029-8. Epub 2021 Feb 22.
Diverse, high-dimensional modalities collected in large cohorts present new opportunities for the formulation and testing of integrative scientific hypotheses. Similarity-driven multi-view linear reconstruction (SiMLR) is an algorithm that exploits inter-modality relationships to transform large scientific datasets into smaller, more well-powered and interpretable low-dimensional spaces. SiMLR contributes an objective function for identifying joint signal, regularization based on sparse matrices representing prior within-modality relationships and an implementation that permits application to joint reduction of large data matrices. We demonstrate that SiMLR outperforms closely related methods on supervised learning problems in simulation data, a multi-omics cancer survival prediction dataset and multiple modality neuroimaging datasets. Taken together, this collection of results shows that SiMLR may be applied to joint signal estimation from disparate modalities and may yield practically useful results in a variety of application domains.
在大型队列中收集的多样、高维模态为整合科学假设的形成和检验提供了新机会。相似性驱动的多视图线性重建(SiMLR)是一种利用模态间关系将大型科学数据集转换为更小、更具效力且可解释的低维空间的算法。SiMLR提供了一个用于识别联合信号的目标函数、基于表示先验模态内关系的稀疏矩阵的正则化以及一种允许应用于大数据矩阵联合降维的实现方法。我们证明,在模拟数据、多组学癌症生存预测数据集和多模态神经影像数据集中的监督学习问题上,SiMLR优于密切相关的方法。综合来看,这些结果表明SiMLR可应用于来自不同模态的联合信号估计,并可能在各种应用领域产生实际有用的结果。