Duchemin Ivan, Blase Xavier
Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble, France.
Université Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France.
J Chem Theory Comput. 2021 Apr 13;17(4):2383-2393. doi: 10.1021/acs.jctc.1c00101. Epub 2021 Apr 2.
We present an implementation of the space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {} optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {} distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
我们展示了一种时空方法的实现,该方法允许使用标准高斯基组进行立方标度全电子计算,而无需考虑任何局域化或稀疏性因素。独立电子磁化率是在实空间位置的非均匀分布上以时间表示构建的,该分布在可分离的单位分解框架内进行优化,以实现具有毫电子伏特精度的标准库仑拟合计算。对于电子数低于几百的系统,所获得分布的紧凑性导致与标准库仑拟合方案出现交叉。所需的解析延拓遵循一种最近的方法,该方法需要对屏蔽库仑势进行延拓,而不是对结构更复杂的自能进行延拓。本方案在大量分子集上进行了基准测试,并在包含多达6000个电子的一系列有缺陷的六方氮化硼薄片上展示了标度性质。