Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India.
Department of Chemistry, Smt. S. M. Panchal Science College, Talod, India.
J Biomol Struct Dyn. 2022 Nov;40(18):8216-8231. doi: 10.1080/07391102.2021.1908170. Epub 2021 Apr 2.
SARS-CoV-2 has recently emerged as a pandemic that has caused more than 2.4 million deaths worldwide. Since the onset of infections, several full-length sequences of viral genome have been made available which have been used to gain insights into viral dynamics. We utilised a meta-data driven comparative analysis tool for sequences (Meta-CATS) algorithm to identify mutations in 829 SARS-CoV-2 genomes from around the world. The algorithm predicted sixty-one mutations among SARS-CoV-2 genomes. We observed that most of the mutations were concentrated around three protein coding genes viz nsp3 (non-structural protein 3), RdRp (RNA-directed RNA polymerase) and Nucleocapsid (N) proteins of SARS-CoV-2. We used various computational tools including normal mode analysis (NMA), C-α discrete molecular dynamics (DMD) and all-atom molecular dynamic simulations (MD) to study the effect of mutations on functionality, stability and flexibility of SARS-CoV-2 structural proteins including envelope (E), N and spike (S) proteins. PredictSNP predictor suggested that four mutations (L37H in E, R203K and P344S in N and D614G in S) out of seven were predicted to be neutral whilst the remaining ones (P13L, S197L and G204R in N) were predicted to be deleterious in nature thereby impacting protein functionality. NMA, C-α DMD and all-atom MD suggested some mutations to have stabilizing roles (P13L, S197L and R203K in N protein) where remaining ones were predicted to destabilize mutant protein. In summary, we identified significant mutations in SARS-CoV-2 genomes as well as used computational approaches to further characterize the possible effect of highly significant mutations on SARS-CoV-2 structural proteins.Communicated by Ramaswamy H. Sarma.
SARS-CoV-2 最近成为一种大流行病毒,在全球范围内造成了超过 240 万人死亡。自感染开始以来,已经获得了多个病毒基因组的全长序列,这些序列被用于深入了解病毒动力学。我们利用一个元数据驱动的序列比较分析工具(Meta-CATS)算法,在全球范围内识别了 829 个 SARS-CoV-2 基因组中的突变。该算法预测了 SARS-CoV-2 基因组中的 61 个突变。我们观察到,大多数突变集中在三个编码蛋白的基因附近,即 nsp3(非结构蛋白 3)、RdRp(RNA 指导的 RNA 聚合酶)和核衣壳(N)蛋白。我们使用了各种计算工具,包括正常模式分析(NMA)、C-α 离散分子动力学(DMD)和全原子分子动力学模拟(MD),研究突变对 SARS-CoV-2 结构蛋白(包括包膜(E)、N 和刺突(S)蛋白)功能、稳定性和灵活性的影响。PredictSNP 预测器表明,七个突变中的四个(E 蛋白中的 L37H、N 蛋白中的 R203K 和 P344S 以及 S 蛋白中的 D614G)被预测为中性,而其余三个(N 蛋白中的 P13L、S197L 和 G204R)被预测为有害,从而影响蛋白质功能。NMA、C-α DMD 和全原子 MD 表明,一些突变具有稳定作用(N 蛋白中的 P13L、S197L 和 R203K),而其余突变则被预测为使突变蛋白不稳定。总之,我们确定了 SARS-CoV-2 基因组中的重要突变,并利用计算方法进一步分析了高度显著突变对 SARS-CoV-2 结构蛋白的可能影响。由 Ramaswamy H. Sarma 交流。