Suppr超能文献

用于神经再生的靶向脑的双位点选择性功能化聚(β-氨基酸酯)传递平台。

Brain-Targeted Dual Site-Selective Functionalized Poly(β-Amino Esters) Delivery Platform for Nerve Regeneration.

机构信息

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.

Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China.

出版信息

Nano Lett. 2021 Apr 14;21(7):3007-3015. doi: 10.1021/acs.nanolett.1c00175. Epub 2021 Apr 2.

Abstract

Brain injuries are devastating central nervous system diseases, resulting in cognitive, motor, and sensory dysfunctions. However, clinical therapeutic options are still limited for brain injuries, indicating an urgent need to investigate new therapies. Furthermore, the efficient delivery of therapeutics across the blood-brain barrier (BBB) to the brain is a serious problem. In this study, a facile strategy of dual site-selective functionalized (DSSF) poly(β-amino esters) was developed using bio-orthogonal chemistry for promoting brain nerve regeneration. Fluorescence colocalization studies demonstrated that these proton-sponge DSSF poly(β-amino esters) targeted mitochondria through electrostatic interactions. More importantly, this delivery system could effectively accumulate in the injured brain sites and accelerate the recovery of the injured brain. Finally, this DSSF poly(β-amino esters) platform may provide a new methodology for the construction of dual regioselective carriers in protein/peptide delivery and tissue engineering.

摘要

脑损伤是一种破坏性的中枢神经系统疾病,可导致认知、运动和感觉功能障碍。然而,目前针对脑损伤的临床治疗选择仍然有限,这表明迫切需要研究新的治疗方法。此外,高效地将治疗药物透过血脑屏障(BBB)递送到大脑是一个严重的问题。在这项研究中,使用生物正交化学开发了一种简便的双位点选择性功能化(DSSF)聚(β-氨基酯)策略,以促进脑神经再生。荧光共定位研究表明,这些质子海绵 DSSF 聚(β-氨基酯)通过静电相互作用靶向线粒体。更重要的是,这种递药系统可以有效地聚集在损伤的大脑部位,并加速损伤大脑的恢复。最后,这个 DSSF 聚(β-氨基酯)平台可能为蛋白质/肽递药和组织工程中双重区域选择性载体的构建提供一种新的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验