Suppr超能文献

跨领域自监督学习。

Self-Supervised Learning Across Domains.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5516-5528. doi: 10.1109/TPAMI.2021.3070791. Epub 2022 Aug 4.

Abstract

Human adaptability relies crucially on learning and merging knowledge from both supervised and unsupervised tasks: the parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help to generalize. In this paper we propose to apply a similar approach to the problem of object recognition across domains: our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals on the same images. This secondary task helps the network to focus on object shapes, learning concepts like spatial orientation and part correlation, while acting as a regularizer for the classification task over multiple visual domains. Extensive experiments confirm our intuition and show that our multi-task method, combining supervised and self-supervised knowledge, provides competitive results with respect to more complex domain generalization and adaptation solutions. It also proves its potential in the novel and challenging predictive and partial domain adaptation scenarios.

摘要

人类的适应能力在很大程度上依赖于从有监督和无监督任务中学习和融合知识

父母指出一些重要的概念,但之后孩子自己去填补空白。这是非常有效的,因为有监督学习永远不可能详尽无遗,因此自主学习可以发现帮助泛化的不变性和规律性。在本文中,我们提出将类似的方法应用于跨领域的目标识别问题:我们的模型以有监督的方式学习语义标签,并通过对同一图像上的自监督信号进行学习,扩展对数据的理解。这个辅助任务帮助网络专注于物体形状,学习空间方向和部分相关性等概念,同时作为跨多个视觉领域的分类任务的正则化器。广泛的实验证实了我们的直觉,并表明我们的多任务方法,结合了有监督和自监督的知识,在更复杂的领域泛化和自适应解决方案方面提供了有竞争力的结果。它还在新颖而具有挑战性的预测和部分领域自适应场景中证明了其潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验