Suppr超能文献

DG-TTA:通过增强、描述符驱动的域泛化和测试时适应实现域外医学图像分割

DG-TTA: Out-of-Domain Medical Image Segmentation Through Augmentation, Descriptor-Driven Domain Generalization, and Test-Time Adaptation.

作者信息

Weihsbach Christian, Kruse Christian N, Bigalke Alexander, Heinrich Mattias P

机构信息

Institute of Medical Informatics, University of Lübeck, 23562 Lübeck, Germany.

EchoScout GmbH, 23562 Lübeck, Germany.

出版信息

Sensors (Basel). 2025 Sep 8;25(17):5603. doi: 10.3390/s25175603.

Abstract

Applying pre-trained medical deep learning segmentation models to out-of-domain images often yields predictions of insufficient quality. In this study, we propose using a robust generalizing descriptor, along with augmentation, to enable domain-generalized pre-training and test-time adaptation, thereby achieving high-quality segmentation in unseen domains. In this study, five different publicly available datasets, including 3D CT and MRI images, are used to evaluate segmentation performance in out-of-domain scenarios. The settings include abdominal, spine, and cardiac imaging. Domain-generalized pre-training on source data is used to obtain the best initial performance in the target domain. We introduce a combination of the generalizing SSC descriptor and GIN intensity augmentation for optimal generalization. Segmentation results are subsequently optimized at test time, where we propose adapting the pre-trained models for every unseen scan using a consistency scheme with the augmentation-descriptor combination. The proposed generalized pre-training and subsequent test-time adaptation improve model performance significantly in CT to MRI cross-domain prediction for abdominal (+46.2 and +28.2 Dice), spine (+72.9), and cardiac (+14.2 and +55.7 Dice) scenarios ( < 0.001). Our method enables the optimal, independent use of source and target data, successfully bridging domain gaps with a compact and efficient methodology.

摘要

将预训练的医学深度学习分割模型应用于域外图像时,通常会产生质量欠佳的预测结果。在本研究中,我们提议使用一种强大的通用描述符,并结合数据增强技术,以实现领域通用的预训练和测试时的自适应调整,从而在未见领域中实现高质量的分割。在本研究中,使用了包括3D CT和MRI图像在内的五个不同的公开可用数据集,来评估域外场景下的分割性能。这些设置包括腹部、脊柱和心脏成像。对源数据进行领域通用的预训练,以在目标领域中获得最佳初始性能。我们引入了通用的SSC描述符和GIN强度增强的组合,以实现最佳的通用性。随后在测试时对分割结果进行优化,在此我们提议使用增强描述符组合的一致性方案,针对每个未见扫描对预训练模型进行自适应调整。所提出的通用预训练和后续的测试时自适应调整,在腹部(Dice系数分别提高了46.2和28.2)、脊柱(提高了72.9)和心脏(Dice系数分别提高了14.2和55.7)的CT到MRI跨域预测场景中,显著提高了模型性能(<0.001)。我们的方法能够最优地、独立地使用源数据和目标数据,通过一种紧凑且高效的方法成功弥合领域差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3931/12430942/de2f98bd8007/sensors-25-05603-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验