School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA.
J Alzheimers Dis. 2020;75(3):971-992. doi: 10.3233/JAD-190973.
Disease progression prediction based on neuroimaging biomarkers is vital in Alzheimer's disease (AD) research. Convolutional neural networks (CNN) have been proved to be powerful for various computer vision research by refining reliable and high-level feature maps from image patches.
A key challenge in applying CNN to neuroimaging research is the limited labeled samples with high dimensional features. Another challenge is how to improve the prediction accuracy by joint analysis of multiple data sources (i.e., multiple time points or multiple biomarkers). To address these two challenges, we propose a novel multi-task learning framework based on CNN.
First, we pre-trained CNN on the ImageNet dataset and transferred the knowledge from the pre-trained model to neuroimaging representation. We used this deep model as feature extractor to generate high-level feature maps of different tasks. Then a novel unsupervised learning method, termed Multi-task Stochastic Coordinate Coding (MSCC), was proposed for learning sparse features of multi-task feature maps by using shared and individual dictionaries. Finally, Lasso regression was performed on these multi-task sparse features to predict AD progression measured by the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-Cog).
We applied this novel CNN-MSCC system on the Alzheimer's Disease Neuroimaging Initiative dataset to predict future MMSE/ADAS-Cog scales. We found our method achieved superior performances compared with seven other methods.
Our work may add new insights into data augmentation and multi-task deep model research and facilitate the adoption of deep models in neuroimaging research.
基于神经影像学生物标志物的疾病进展预测在阿尔茨海默病(AD)研究中至关重要。卷积神经网络(CNN)已被证明通过从图像块中提炼可靠和高级特征图,在各种计算机视觉研究中具有强大的功能。
将 CNN 应用于神经影像学研究的一个关键挑战是具有高维特征的有限标记样本。另一个挑战是如何通过联合分析多个数据源(即多个时间点或多个生物标志物)来提高预测精度。为了解决这两个挑战,我们提出了一种基于 CNN 的新的多任务学习框架。
首先,我们在 ImageNet 数据集上对 CNN 进行预训练,并将知识从预训练模型转移到神经影像学表示中。我们使用这个深度模型作为特征提取器,生成不同任务的高级特征图。然后,提出了一种新的无监督学习方法,称为多任务随机坐标编码(MSCC),通过使用共享和单独的字典来学习多任务特征图的稀疏特征。最后,对这些多任务稀疏特征进行 Lasso 回归,以预测由 Mini-Mental State Examination(MMSE)和 Alzheimer's Disease Assessment Scale 认知子量表(ADAS-Cog)测量的 AD 进展。
我们将这种新的 CNN-MSCC 系统应用于 Alzheimer's Disease Neuroimaging Initiative 数据集,以预测未来的 MMSE/ADAS-Cog 量表。我们发现与其他七种方法相比,我们的方法取得了更好的性能。
我们的工作可能为数据增强和多任务深度模型研究提供新的见解,并促进深度模型在神经影像学研究中的应用。