Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.
Advanced Sensor Technology, Centre of Exellence (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.
Sensors (Basel). 2021 Mar 8;21(5):1875. doi: 10.3390/s21051875.
Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors' knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
季节性作物需要可靠的储存条件来保护收获后的产量。对于长期储存,控制谷物中的水分含量水平是具有挑战性的,因为现有的水分测量技术既耗时又费力,因为测量是手动进行的。测量是使用样本进行的,并且水分可能在筒仓/仓内不均匀分布。已经进行了许多研究来利用介电特性测量谷物中的水分含量。据作者所知,利用低成本的无线技术在 2.4GHz 和 915MHz ISM 频段(如无线传感器网络 (WSN) 和射频识别 (RFID))运行尚未得到广泛研究。本研究重点介绍了使用 ZigBee 标准和 868 至 915MHz UHF RFID 收发器对 2.4GHz 射频 (RF) 收发器进行特性描述,用于使用人工神经网络 (ANN) 模型对水分含量进行分类和预测。无线收发器的接收信号强度指示 (RSSI) 用于预测大米中的水分含量。将四个样本(每个样本 2 公斤大米)调节至 10%、15%、20%和 25%的水分含量。获得并处理来自这两个系统的 RSSI。处理后的数据用作不同 ANN 模型(如支持向量机 (SVM)、K-最近邻 (KNN)、随机森林和多层感知机 (MLP))的输入。结果表明,与其他四个模型相比,具有一个输入特征(RSSI_WSN)的随机森林方法提供了 87%的最高精度。当使用两个输入特征(RSSI_WSN 和 RSSI_TAG2)时,所有模型的准确率都超过 98%。因此,随机森林是一种可靠的模型,即使只使用一个输入特征,也可以用于预测大米中的水分含量水平,因为它具有很高的准确性。