Suppr超能文献

从受气候胁迫的原生浮游生物网络推断湖泊生态系统的稳健性和恢复力。

Lake Ecosystem Robustness and Resilience Inferred from a Climate-Stressed Protistan Plankton Network.

作者信息

Forster Dominik, Qu Zhishuai, Pitsch Gianna, Bruni Estelle P, Kammerlander Barbara, Pröschold Thomas, Sonntag Bettina, Posch Thomas, Stoeck Thorsten

机构信息

Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany.

Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland.

出版信息

Microorganisms. 2021 Mar 6;9(3):549. doi: 10.3390/microorganisms9030549.

Abstract

Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October-April; May-September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties.

摘要

生物群落的网络分析有助于确定气候变化对生态系统恢复力及其抵抗压力源的稳健性的潜在影响。利用三年采样(73个样本)的DNA宏条形码数据集,我们构建了苏黎世湖的原生浮游生物共现网络,苏黎世湖是一个受气候变化影响的典型湖泊生态系统。尽管有多项记录表明苏黎世湖出现了显著的湖水变暖现象,但我们的研究通过将生物关联模式的变化与气候压力联系起来,提供了一个前所未有的视角。水温是最强的环境参数之一,它将数据分为两个不同的季节性网络(10月至4月;5月至9月)。由于永久性热分层导致营养物质耗尽以及寄生真菌的影响,浮游植物的预期生态位被削弱,而蓝细菌和混合营养型纳米鞭毛虫占据了这一生态位。与关键捕食者(纤毛虫)相关的主要猎物生物不是浮游植物,而是细菌和纳米鞭毛虫,这与湖泊浮游生物中生物关联的传统观点形成了对比。在物种灭绝的情景下,暖季网络比冷季网络显得更脆弱,这表明冬季气温升高对群落有时间滞后效应。我们得出结论,如关键网络属性所示,气候压力源通过物种替代、丰富度差异和演替损害了湖泊生态系统的稳健性和恢复力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd9/8001626/5dc1ef1a5b40/microorganisms-09-00549-g001.jpg

相似文献

1
Lake Ecosystem Robustness and Resilience Inferred from a Climate-Stressed Protistan Plankton Network.
Microorganisms. 2021 Mar 6;9(3):549. doi: 10.3390/microorganisms9030549.
2
Aquatic food webs in deep temperate lakes: Key species establish through their autecological versatility.
Mol Ecol. 2021 Feb;30(4):1053-1071. doi: 10.1111/mec.15776. Epub 2020 Dec 21.
3
The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium Triggered by Stratification Dynamics and Irradiance.
Front Microbiol. 2021 Aug 25;12:705914. doi: 10.3389/fmicb.2021.705914. eCollection 2021.
7
Impact of climate warming on phenological asynchrony of plankton dynamics across Europe.
Ecol Lett. 2023 May;26(5):717-728. doi: 10.1111/ele.14190. Epub 2023 Mar 4.
8
Microbial community structure and dynamics in the largest natural French lake (Lake Bourget).
Microb Ecol. 2006 Jul;52(1):72-89. doi: 10.1007/s00248-004-0230-4. Epub 2006 May 29.

引用本文的文献

3
Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis.
BMC Biol. 2024 Dec 2;22(1):279. doi: 10.1186/s12915-024-02077-8.
4
FISHing for ciliates: Catalyzed reporter deposition fluorescence hybridization for the detection of planktonic freshwater ciliates.
Front Microbiol. 2022 Dec 12;13:1070232. doi: 10.3389/fmicb.2022.1070232. eCollection 2022.
7
Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts.
Microbiol Spectr. 2022 Feb 23;10(1):e0158021. doi: 10.1128/spectrum.01580-21. Epub 2022 Jan 5.
8
Long-term dynamics of the human oral microbiome during clinical disease progression.
BMC Biol. 2021 Nov 6;19(1):240. doi: 10.1186/s12915-021-01169-z.
9

本文引用的文献

1
Aquatic food webs in deep temperate lakes: Key species establish through their autecological versatility.
Mol Ecol. 2021 Feb;30(4):1053-1071. doi: 10.1111/mec.15776. Epub 2020 Dec 21.
2
Co-occurrence is not evidence of ecological interactions.
Ecol Lett. 2020 Jul;23(7):1050-1063. doi: 10.1111/ele.13525. Epub 2020 May 19.
3
Using co-occurrence network topology in assessing ecological stress in benthic macroinvertebrate communities.
Ecol Evol. 2019 Oct 29;9(22):12789-12801. doi: 10.1002/ece3.5751. eCollection 2019 Nov.
5
Improving eDNA-based protist diversity assessments using networks of amplicon sequence variants.
Environ Microbiol. 2019 Nov;21(11):4109-4124. doi: 10.1111/1462-2920.14764. Epub 2019 Aug 16.
6
Use and abuse of correlation analyses in microbial ecology.
ISME J. 2019 Nov;13(11):2647-2655. doi: 10.1038/s41396-019-0459-z. Epub 2019 Jun 28.
7
Benthic Diatom Communities in an Alpine River Impacted by Waste Water Treatment Effluents as Revealed Using DNA Metabarcoding.
Front Microbiol. 2019 Apr 9;10:653. doi: 10.3389/fmicb.2019.00653. eCollection 2019.
8
Time series are critical to understand microbial plankton diversity and ecology.
Mol Ecol. 2019 Mar;28(5):920-922. doi: 10.1111/mec.15015.
9
Quantifying long-term recurrence in planktonic microbial eukaryotes.
Mol Ecol. 2019 Mar;28(5):923-935. doi: 10.1111/mec.14929. Epub 2019 Feb 4.
10
Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes.
J Eukaryot Microbiol. 2019 Jan;66(1):4-119. doi: 10.1111/jeu.12691.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验