Forster Dominik, Qu Zhishuai, Pitsch Gianna, Bruni Estelle P, Kammerlander Barbara, Pröschold Thomas, Sonntag Bettina, Posch Thomas, Stoeck Thorsten
Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany.
Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland.
Microorganisms. 2021 Mar 6;9(3):549. doi: 10.3390/microorganisms9030549.
Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October-April; May-September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties.
生物群落的网络分析有助于确定气候变化对生态系统恢复力及其抵抗压力源的稳健性的潜在影响。利用三年采样(73个样本)的DNA宏条形码数据集,我们构建了苏黎世湖的原生浮游生物共现网络,苏黎世湖是一个受气候变化影响的典型湖泊生态系统。尽管有多项记录表明苏黎世湖出现了显著的湖水变暖现象,但我们的研究通过将生物关联模式的变化与气候压力联系起来,提供了一个前所未有的视角。水温是最强的环境参数之一,它将数据分为两个不同的季节性网络(10月至4月;5月至9月)。由于永久性热分层导致营养物质耗尽以及寄生真菌的影响,浮游植物的预期生态位被削弱,而蓝细菌和混合营养型纳米鞭毛虫占据了这一生态位。与关键捕食者(纤毛虫)相关的主要猎物生物不是浮游植物,而是细菌和纳米鞭毛虫,这与湖泊浮游生物中生物关联的传统观点形成了对比。在物种灭绝的情景下,暖季网络比冷季网络显得更脆弱,这表明冬季气温升高对群落有时间滞后效应。我们得出结论,如关键网络属性所示,气候压力源通过物种替代、丰富度差异和演替损害了湖泊生态系统的稳健性和恢复力。