Suppr超能文献

膳食铁螯合生物活性化合物在氧化应激诱导细胞衰老分子机制中的作用

Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative Stress-Induced Cell Ageing.

作者信息

Barbouti Alexandra, Lagopati Nefeli, Veroutis Dimitris, Goulas Vlasios, Evangelou Konstantinos, Kanavaros Panagiotis, Gorgoulis Vassilis G, Galaris Dimitrios

机构信息

Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.

Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece.

出版信息

Antioxidants (Basel). 2021 Mar 21;10(3):491. doi: 10.3390/antiox10030491.

Abstract

One of the prevailing perceptions regarding the ageing of cells and organisms is the intracellular gradual accumulation of oxidatively damaged macromolecules, leading to the decline of cell and organ function (free radical theory of ageing). This chemically undefined material known as "lipofuscin," "ceroid," or "age pigment" is mainly formed through unregulated and nonspecific oxidative modifications of cellular macromolecules that are induced by highly reactive free radicals. A necessary precondition for reactive free radical generation and lipofuscin formation is the intracellular availability of ferrous iron (Fe) ("labile iron"), catalyzing the conversion of weak oxidants such as peroxides, to extremely reactive ones like hydroxyl (HO) or alcoxyl (RO) radicals. If the oxidized materials remain unrepaired for extended periods of time, they can be further oxidized to generate ultimate over-oxidized products that are unable to be repaired, degraded, or exocytosed by the relevant cellular systems. Additionally, over-oxidized materials might inactivate cellular protection and repair mechanisms, thus allowing for futile cycles of increasingly rapid lipofuscin accumulation. In this review paper, we present evidence that the modulation of the labile iron pool distribution by nutritional or pharmacological means represents a hitherto unappreciated target for hampering lipofuscin accumulation and cellular ageing.

摘要

关于细胞和生物体衰老的一个普遍观点是,细胞内氧化损伤的大分子逐渐积累,导致细胞和器官功能衰退(衰老的自由基理论)。这种化学性质不明确的物质被称为“脂褐素”“类蜡质”或“老年色素”,主要是由高活性自由基诱导的细胞大分子的无规律、非特异性氧化修饰形成的。活性自由基产生和脂褐素形成的一个必要前提是细胞内亚铁(Fe)(“不稳定铁”)的存在,它催化过氧化物等弱氧化剂转化为极具活性的羟基(HO)或烷氧基(RO)自由基。如果氧化后的物质长时间未得到修复,它们可能会进一步氧化生成最终的过度氧化产物,这些产物无法被相关细胞系统修复、降解或胞吐。此外,过度氧化的物质可能会使细胞保护和修复机制失活,从而导致脂褐素积累越来越快的无效循环。在这篇综述论文中,我们提供证据表明,通过营养或药理学手段调节不稳定铁池的分布是一个迄今为止未被重视的阻碍脂褐素积累和细胞衰老的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb47/8003849/aef0a9e75507/antioxidants-10-00491-g001.jpg

相似文献

2
Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link?
Antioxidants (Basel). 2023 Jun 10;12(6):1250. doi: 10.3390/antiox12061250.
3
Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
Infect Disord Drug Targets. 2013 Aug;13(4):217-77. doi: 10.2174/1871526513666131129155708.
4
Combined administration of membrane-permeable and impermeable iron-chelating drugs attenuates ischemia/reperfusion-induced hepatic injury.
Free Radic Biol Med. 2022 Nov 20;193(Pt 1):227-237. doi: 10.1016/j.freeradbiomed.2022.10.266. Epub 2022 Oct 13.
6
Lipofuscin and ceroid formation: the cellular recycling system.
Adv Exp Med Biol. 1989;266:3-15. doi: 10.1007/978-1-4899-5339-1_1.
7
Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells.
Free Radic Biol Med. 2010 Apr 15;48(8):1100-8. doi: 10.1016/j.freeradbiomed.2010.01.030. Epub 2010 Jan 29.
8
L-serine restored lysosomal failure in cells derived from patients with BPAN reducing iron accumulation with eliminating lipofuscin.
Free Radic Biol Med. 2024 Aug 20;221:273-282. doi: 10.1016/j.freeradbiomed.2024.05.017. Epub 2024 May 11.
9
Oxidative stress and aging: the potential role of iron.
Hormones (Athens). 2008 Apr-Jun;7(2):114-22. doi: 10.1007/BF03401502.

引用本文的文献

1
High iron in mouse olfactory ensheathing cells at the glia limitans in the olfactory bulb underlies MRI T * hypointensity.
Imaging Neurosci (Camb). 2024 Sep 30;2. doi: 10.1162/imag_a_00299. eCollection 2024.
2
The Role of Oxidative Stress-Induced Senescence in the Pathogenesis of Preeclampsia.
Antioxidants (Basel). 2025 Apr 28;14(5):529. doi: 10.3390/antiox14050529.
6
Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review.
Nanomaterials (Basel). 2023 Jul 31;13(15):2224. doi: 10.3390/nano13152224.
8
Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link?
Antioxidants (Basel). 2023 Jun 10;12(6):1250. doi: 10.3390/antiox12061250.
9
Impact of on various characteristics of tomatoes during nickel nitrate stress under aeroponic and greenhouse conditions.
Front Microbiol. 2023 Feb 3;13:1091036. doi: 10.3389/fmicb.2022.1091036. eCollection 2022.

本文引用的文献

1
Ferroptosis: mechanisms, biology and role in disease.
Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282. doi: 10.1038/s41580-020-00324-8. Epub 2021 Jan 25.
2
Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent.
Pharmacol Ther. 2021 Jun;222:107795. doi: 10.1016/j.pharmthera.2020.107795. Epub 2020 Dec 24.
3
Response to iron overload in cultured hepatocytes.
Sci Rep. 2020 Dec 3;10(1):21184. doi: 10.1038/s41598-020-78026-6.
4
Reflections of an aging free radical.
Free Radic Biol Med. 2020 Dec;161:234-245. doi: 10.1016/j.freeradbiomed.2020.10.010. Epub 2020 Oct 13.
5
Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies.
Cancers (Basel). 2020 Jul 31;12(8):2134. doi: 10.3390/cancers12082134.
6
Basics and principles of cellular and systemic iron homeostasis.
Mol Aspects Med. 2020 Oct;75:100866. doi: 10.1016/j.mam.2020.100866. Epub 2020 Jun 18.
7
Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.
Nat Rev Mol Cell Biol. 2020 Jul;21(7):363-383. doi: 10.1038/s41580-020-0230-3. Epub 2020 Mar 30.
8
Oxidized protein aggregates: Formation and biological effects.
Free Radic Biol Med. 2020 Apr;150:120-124. doi: 10.1016/j.freeradbiomed.2020.02.014. Epub 2020 Feb 22.
9
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution.
Oxid Med Cell Longev. 2020 Feb 5;2020:7986071. doi: 10.1155/2020/7986071. eCollection 2020.
10
Cellular Senescence: Defining a Path Forward.
Cell. 2019 Oct 31;179(4):813-827. doi: 10.1016/j.cell.2019.10.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验