Suppr超能文献

脑电图能否作为评估软件程序员认知负荷的神经科学参考?

Can EEG Be Adopted as a Neuroscience Reference for Assessing Software Programmers' Cognitive Load?

机构信息

Department of Informatics Engineering, CISUC-Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, P-3030-790 Coimbra, Portugal.

Coimbra Polytechnic-ISEC, R. Pedro Nunes, P-3030-199 Coimbra, Portugal.

出版信息

Sensors (Basel). 2021 Mar 27;21(7):2338. doi: 10.3390/s21072338.

Abstract

An emergent research area in software engineering and software reliability is the use of wearable biosensors to monitor the cognitive state of software developers during software development tasks. The goal is to gather physiologic manifestations that can be linked to error-prone scenarios related to programmers' cognitive states. In this paper we investigate whether electroencephalography (EEG) can be applied to accurately identify programmers' cognitive load associated with the comprehension of code with different complexity levels. Therefore, a controlled experiment involving 26 programmers was carried. We found that features related to Theta, Alpha, and Beta brain waves have the highest discriminative power, allowing the identification of code lines and demanding higher mental effort. The EEG results reveal evidence of mental effort saturation as code complexity increases. Conversely, the classic software complexity metrics do not accurately represent the mental effort involved in code comprehension. Finally, EEG is proposed as a reference, in particular, the combination of EEG with eye tracking information allows for an accurate identification of code lines that correspond to peaks of cognitive load, providing a reference to help in the future evaluation of the space and time accuracy of programmers' cognitive state monitored using wearable devices compatible with software development activities.

摘要

在软件工程和软件可靠性领域,一个新兴的研究方向是使用可穿戴生物传感器来监测软件开发任务期间软件开发人员的认知状态。目标是收集与程序员认知状态相关的易错场景有关的生理表现。在本文中,我们研究了脑电图(EEG)是否可用于准确识别与理解不同复杂程度的代码相关的程序员认知负荷。因此,进行了一项涉及 26 名程序员的对照实验。我们发现与Theta、Alpha 和 Beta 脑波相关的特征具有最高的区分能力,允许识别代码行和需要更高的心理努力。脑电图结果表明,随着代码复杂性的增加,脑力劳动达到饱和。相反,经典的软件复杂度指标不能准确地表示代码理解所涉及的脑力劳动。最后,提出了脑电图作为参考,特别是脑电图与眼动跟踪信息的结合,可准确识别与认知负荷峰值对应的代码行,为使用与软件开发活动兼容的可穿戴设备监测程序员认知状态的时空准确性评估提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc49/8037053/f5642c901b3c/sensors-21-02338-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验