Suppr超能文献

与心率变异性具有最大相关性的瞳孔测量最佳频段。

Optimal frequency bands for pupillography for maximal correlation with HRV.

作者信息

Medeiros Júlio, Bernardes André, Couceiro Ricardo, Oliveira Paulo, Madeira Henrique, Teixeira César, Carvalho Paulo

机构信息

Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.

Department of Mathematics, University of Coimbra, Coimbra, Portugal.

出版信息

Sci Rep. 2025 Jan 27;15(1):3361. doi: 10.1038/s41598-025-85663-2.

Abstract

Assessing cognitive load using pupillography frequency features presents a persistent challenge due to the lack of consensus on optimal frequency limits. This study aims to address this challenge by exploring pupillography frequency bands and seeking clarity in defining the most effective ranges for cognitive load assessment. From a controlled experiment involving 21 programmers performing software bug inspection, our study pinpoints the optimal low-frequency (0.06-0.29 Hz) and high-frequency (0.29-0.49 Hz) bands. Correlation analysis yielded a geometric mean of 0.238 compared to Heart Rate Variability features, with individual correlations for low-frequency, high-frequency, and their ratio at 0.279, 0.168, and 0.286, respectively. Extending the study to 51 participants, including a different experiment focusing on mental arithmetic tasks, validated the previous findings and further refined bands, maintaining effectiveness with a geometric mean correlation of 0.236 and surpassing common frequency bands reported in the existing literature. This study represents a pivotal step toward converging and establishing a coherent framework for frequency band definition to be used in pupillography analysis. Furthermore, based on this, it also contributes insights into the importance of more integration and adoption of eye-tracking with pupillography technology into authentic software development contexts for cognitive load assessment at a very fine level of granularity.

摘要

由于在最佳频率限制方面缺乏共识,利用瞳孔测量频率特征评估认知负荷一直是一项具有挑战性的任务。本研究旨在通过探索瞳孔测量频段并明确界定认知负荷评估最有效范围来应对这一挑战。通过一项涉及21名程序员进行软件错误检查的对照实验,我们的研究确定了最佳低频(0.06 - 0.29赫兹)和高频(0.29 - 0.49赫兹)频段。与心率变异性特征相比,相关性分析得出的几何平均值为0.238,低频、高频及其比率的个体相关性分别为0.279、0.168和0.286。将研究扩展至51名参与者,包括一项专注于心算任务的不同实验,验证了先前的研究结果并进一步优化了频段,几何平均相关性为0.236,保持了有效性,且超过了现有文献中报道的常见频段。这项研究是朝着汇聚并建立一个用于瞳孔测量分析的频段定义连贯框架迈出的关键一步。此外,基于此,它还为在真实软件开发环境中以非常精细的粒度进行认知负荷评估时,将更多眼动追踪与瞳孔测量技术整合及应用的重要性提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9594/11772668/b99055829a3d/41598_2025_85663_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验