Suppr超能文献

用于行人接触者追踪的移动聚类方案:以COVID-19为例

Mobile Clustering Scheme for Pedestrian Contact Tracing: The COVID-19 Case Study.

作者信息

Rivero-Angeles Mario E, Barrera-Figueroa Víctor, Malfavón-Talavera José E, García-Tejeda Yunia V, Orea-Flores Izlian Y, Jiménez-Ramírez Omar, Bermúdez-Sosa José A

机构信息

Communication Networks Laboratory, CIC-Instituto Politécnico Nacional, Mexico City 07738, Mexico.

SEPI-UPIITA-Instituto Politécnico Nacional, Mexico City 07740, Mexico.

出版信息

Entropy (Basel). 2021 Mar 10;23(3):326. doi: 10.3390/e23030326.

Abstract

In the context of smart cities, there is a general benefit from monitoring close encounters among pedestrians. For instance, for the access control to office buildings, subway, commercial malls, etc., where a high amount of users may be present simultaneously, and keeping a strict record on each individual may be challenging. GPS tracking may not be available in many indoor cases; video surveillance may require expensive deployment (mainly due to the high-quality cameras and face recognition algorithms) and can be restrictive in case of low budget applications; RFID systems can be cumbersome and limited in the detection range. This information can later be used in many different scenarios. For instance, in case of earthquakes, fires, and accidents in general, the administration of the buildings can have a clear record of the people inside for victim searching activities. However, in the pandemic derived from the COVID-19 outbreak, a tracking that allows detecting of pedestrians in close range (a few meters) can be particularly useful to control the virus propagation. Hence, we propose a mobile clustering scheme where only a selected number of pedestrians (Cluster Heads) collect the information of the people around them (Cluster Members) in their trajectory inside the area of interest. Hence, a small number of transmissions are made to a control post, effectively limiting the collision probability and increasing the successful registration of people in close contact. Our proposal shows an increased success packet transmission probability and a reduced collision and idle slot probability, effectively improving the performance of the system compared to the case of direct transmissions from each node.

摘要

在智慧城市的背景下,监测行人之间的近距离接触具有普遍益处。例如,对于办公楼、地铁、商业购物中心等可能同时有大量用户的场所的门禁控制,对每个人进行严格记录可能具有挑战性。在许多室内情况下,可能无法使用全球定位系统(GPS)跟踪;视频监控可能需要昂贵的部署(主要是由于高质量摄像头和人脸识别算法),并且在预算较低的应用中可能受到限制;射频识别(RFID)系统可能繁琐且检测范围有限。这些信息稍后可用于许多不同场景。例如,在发生地震、火灾及一般事故时,建筑物管理部门可以清楚地记录楼内人员情况,以便进行受害者搜寻工作。然而,在由新冠疫情引发的大流行期间,一种能够检测近距离(几米)行人的跟踪方式对于控制病毒传播可能特别有用。因此,我们提出一种移动聚类方案,其中只有选定数量的行人(簇头)在其感兴趣区域内的轨迹中收集周围人员(簇成员)的信息。因此,只需向控制站进行少量传输,有效降低了碰撞概率,并增加了密切接触人员的成功登记率。与每个节点直接传输的情况相比,我们的方案显示出更高的数据包传输成功率以及更低的碰撞和空闲时隙概率,有效提高了系统性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2b/7999408/091949131b7c/entropy-23-00326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验