Orthogonal Biologics, Champaign, IL 61821, USA.
U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
Science. 2020 Sep 4;369(6508):1261-1265. doi: 10.1126/science.abc0870. Epub 2020 Aug 4.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds angiotensin-converting enzyme 2 (ACE2) on host cells to initiate entry, and soluble ACE2 is a therapeutic candidate that neutralizes infection by acting as a decoy. By using deep mutagenesis, mutations in ACE2 that increase S binding are found across the interaction surface, in the asparagine 90-glycosylation motif and at buried sites. The mutational landscape provides a blueprint for understanding the specificity of the interaction between ACE2 and S and for engineering high-affinity decoy receptors. Combining mutations gives ACE2 variants with affinities that rival those of monoclonal antibodies. A stable dimeric variant shows potent SARS-CoV-2 and -1 neutralization in vitro. The engineered receptor is catalytically active, and its close similarity with the native receptor may limit the potential for viral escape.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的刺突(S)蛋白与宿主细胞上的血管紧张素转换酶 2(ACE2)结合以启动进入,可溶性 ACE2 是一种治疗候选物,通过充当诱饵来中和感染。通过使用深度诱变,在相互作用表面、天冬酰胺 90 位糖基化模体和埋藏部位发现了增加 S 结合的 ACE2 突变。突变景观为理解 ACE2 和 S 之间相互作用的特异性以及工程高亲和力诱饵受体提供了蓝图。组合突变赋予 ACE2 变体与单克隆抗体相当的亲和力。稳定的二聚体变体在体外显示出对 SARS-CoV-2 和 -1 的强大中和作用。该工程受体具有催化活性,其与天然受体的高度相似性可能限制病毒逃逸的潜力。