Caldona Eugene B, Borrego Ernesto I, Shelar Ketki E, Mukeba Karl M, Smith Dennis W
Department of Chemistry and MSU Advanced Composites Institute, Mississippi State University, Mississippi State, MS 39762, USA.
Materials (Basel). 2021 Mar 18;14(6):1486. doi: 10.3390/ma14061486.
Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer's performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and -diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.
聚合物的许多理想特性源于聚合方法及其重复单元的结构特征,这些特征通常决定了聚合物的性能,但往往是以可加工性为代价的。虽然线性聚合物很常见,但主链由环状重复单元组成的聚合物通常表现出更高的光学透明度、更低的吸水率和更高的玻璃化转变温度。这些聚合物具体包括含有取代脂环族结构或芳环或两者兼有的聚合物。在这篇综述文章中,我们重点介绍了两类有用的成环聚合物,全氟环丁基(PFCB)芳基醚聚合物和基于 -二炔基芳烃-(ODA)的热固性聚合物,它们都表现出出色的热稳定性、耐化学性、机械完整性和改进的可加工性。本文讨论了这些聚合物的不同合成路线(重点是成环聚合)和性能,随后介绍了它们在广泛领域的相关应用。