Suppr超能文献

来自澳大利亚亚高山地区一种地方性土壤微生物群落的甲烷汇强度失衡。

Disproportionate CH Sink Strength from an Endemic, Sub-Alpine Australian Soil Microbial Community.

作者信息

McDaniel Marshall D, Hernández Marcela, Dumont Marc G, Ingram Lachlan J, Adams Mark A

机构信息

Centre for Carbon Water and Food, Sydney Institute of Agriculture, University of Sydney, Brownlow Hill 2570, Australia.

Department of Agronomy, Iowa State University, Ames, IA 50011, USA.

出版信息

Microorganisms. 2021 Mar 15;9(3):606. doi: 10.3390/microorganisms9030606.

Abstract

Soil-to-atmosphere methane (CH) fluxes are dependent on opposing microbial processes of production and consumption. Here we use a soil-vegetation gradient in an Australian sub-alpine ecosystem to examine links between composition of soil microbial communities, and the fluxes of greenhouse gases they regulate. For each soil/vegetation type (forest, grassland, and bog), we measured carbon dioxide (CO) and CH fluxes and their production/consumption at 5 cm intervals to a depth of 30 cm. All soils were sources of CO, ranging from 49 to 93 mg CO m h. Forest soils were strong net sinks for CH, at rates of up to -413 µg CH m h. Grassland soils varied, with some soils acting as sources and some as sinks, but overall averaged -97 µg CH m h. Bog soils were net sources of CH (+340 µg CH m h). Methanotrophs were dominated by USCα in forest and grassland soils, and Methylomirabilis in the bog soils. were also detected at relatively low abundance in all soils. Our study suggests that there is a disproportionately large contribution of these ecosystems to the global soil CH sink, which highlights our dependence on soil ecosystem services in remote locations driven by unique populations of soil microbes. It is paramount to explore and understand these remote, hard-to-reach ecosystems to better understand biogeochemical cycles that underpin global sustainability.

摘要

土壤到大气的甲烷(CH)通量取决于相互对立的微生物产生和消耗过程。在这里,我们利用澳大利亚亚高山生态系统中的土壤 - 植被梯度,来研究土壤微生物群落组成与它们所调节的温室气体通量之间的联系。对于每种土壤/植被类型(森林、草地和沼泽),我们每隔5厘米测量一次二氧化碳(CO₂)和CH₄通量及其产生/消耗情况,深度达30厘米。所有土壤都是CO₂的排放源,排放速率在49至93毫克CO₂·m⁻²·h⁻¹之间。森林土壤是CH₄的强净吸收汇,吸收速率高达 -413微克CH₄·m⁻²·h⁻¹。草地土壤情况各异,有些土壤是排放源,有些是吸收汇,但总体平均为 -97微克CH₄·m⁻²·h⁻¹。沼泽土壤是CH₄的净排放源(+340微克CH₄·m⁻²·h⁻¹)。森林和草地土壤中的甲烷氧化菌以USCα为主,沼泽土壤中以Methylomirabilis为主。在所有土壤中也检测到了相对低丰度的[此处原文缺失相关内容]。我们的研究表明,这些生态系统对全球土壤CH₄汇的贡献 disproportionately large[此处英文表述有误,推测可能是“不成比例地大”,但英文错误无法准确翻译],这凸显了我们对由独特土壤微生物种群驱动的偏远地区土壤生态系统服务的依赖。探索和了解这些偏远、难以到达的生态系统对于更好地理解支撑全球可持续性的生物地球化学循环至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验