Suppr超能文献

基于智能手表惯性传感器的人体活动识别的分布外检测。

Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors.

机构信息

Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.

Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada.

出版信息

Sensors (Basel). 2021 Mar 1;21(5):1669. doi: 10.3390/s21051669.

Abstract

Out-of-distribution (OOD) in the context of Human Activity Recognition (HAR) refers to data from activity classes that are not represented in the training data of a Machine Learning (ML) algorithm. OOD data are a challenge to classify accurately for most ML algorithms, especially deep learning models that are prone to overconfident predictions based on in-distribution (IIN) classes. To simulate the OOD problem in physiotherapy, our team collected a new dataset (SPARS9x) consisting of inertial data captured by smartwatches worn by 20 healthy subjects as they performed supervised physiotherapy exercises (IIN), followed by a minimum 3 h of data captured for each subject as they engaged in unrelated and unstructured activities (OOD). In this paper, we experiment with three traditional algorithms for OOD-detection using engineered statistical features, deep learning-generated features, and several popular deep learning approaches on SPARS9x and two other publicly-available human activity datasets (MHEALTH and SPARS). We demonstrate that, while deep learning algorithms perform better than simple traditional algorithms such as KNN with engineered features for in-distribution classification, traditional algorithms outperform deep learning approaches for OOD detection for these HAR time series datasets.

摘要

在人类活动识别(HAR)的背景下,离群(OOD)是指不在机器学习(ML)算法训练数据中表示的活动类别的数据。对于大多数 ML 算法来说,OOD 数据的准确分类是一个挑战,尤其是深度学习模型,它们容易基于分布内(IIN)类进行过度自信的预测。为了在物理治疗中模拟 OOD 问题,我们的团队收集了一个新的数据集(SPARS9x),该数据集由 20 名健康受试者佩戴的智能手表捕获的惯性数据组成,这些受试者在进行监督物理治疗运动(IIN)时佩戴了这些智能手表,然后为每个受试者至少捕获 3 小时的数据,这些数据是他们进行不相关和无结构活动时捕获的(OOD)。在本文中,我们使用工程统计特征、深度学习生成的特征以及 SPARS9x 和另外两个公开可用的人类活动数据集(MHEALTH 和 SPARS)上的几种流行的深度学习方法,对三种传统的 OOD 检测算法进行了实验。我们证明,虽然深度学习算法在 IIN 分类方面的表现优于具有工程特征的简单传统算法(如 KNN),但对于这些 HAR 时间序列数据集,传统算法在 OOD 检测方面的表现优于深度学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1415/7957807/0c31fc03d380/sensors-21-01669-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验