Shikura Noriyasu, Darbon Emmanuelle, Esnault Catherine, Deniset-Besseau Ariane, Xu Delin, Lejeune Clara, Jacquet Eric, Nhiri Naima, Sago Laila, Cornu David, Werten Sebastiaan, Martel Cécile, Virolle Marie-Joelle
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
Antibiotics (Basel). 2021 Mar 20;10(3):325. doi: 10.3390/antibiotics10030325.
In , antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, , encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of . In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that is co-transcribed with its two downstream genes, , encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and encoding a nudix hydrolase. The expression of the operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, can also be transcribed alone from their own promoter. The deletion of resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of , whereas the deletion of had no obvious phenotypical consequences. The disruption of was shown to have a polar effect on the expression of , suggesting that the phenotype of the mutant might be linked, at least in part, to the weak expression of in this strain. Interestingly, the expression of and that of the genes of the regulon involved in phosphate supply or saving were strongly up-regulated in and mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate.
在[具体情况]中,抗生素生物合成在磷酸盐限制条件下被触发,而磷酸盐限制通常与能量应激相关。多聚磷酸盐构成了磷酸盐和能量的重要储存库,更好地理解它们在抗生素生物合成调控中的作用至关重要。我们之前鉴定了一个编码多聚磷酸盐激酶的基因[具体基因名称],其缺失极大地增强了[菌株名称]微弱的抗生素产量。在能量应激条件下,Ppk利用多聚磷酸盐作为磷酸盐和能量供体,从ADP生成ATP。在本文中,我们确定[具体基因名称]与其两个下游基因共转录,一个下游基因[具体基因名称]编码一种名为PptA的磷蛋白,其具有一个构成多聚磷酸盐结合模块的CHAD结构域,另一个下游基因[具体基因名称]编码一种Nudix水解酶。[具体基因名称]操纵子的表达被证明受双组分系统PhoR/PhoP的正调控,因此主要在磷酸盐限制条件下表达。然而,[具体基因名称]也可以从它们自己的启动子单独转录。[具体基因名称]的缺失导致放线紫红素的产生更早且更强,脂质含量低于[具体基因名称]的缺失,而[具体基因名称]的缺失没有明显的表型后果。[具体基因名称]的缺失被证明对[具体基因名称]的表达有极性影响,表明[具体基因名称]突变体的表型可能至少部分与该菌株中[具体基因名称]的弱表达有关。有趣的是,[具体基因名称]以及参与磷酸盐供应或节约的[具体基因名称]调控子基因的表达在[具体基因名称]和[具体基因名称]突变体中强烈上调,表明这两个突变体都遭受磷酸盐应激。考虑到PptA中存在多聚磷酸盐结合模块,但PptA与已知的外切多聚磷酸酶之间缺乏相似性,我们提出PptA构成了参与将多聚磷酸盐降解为磷酸盐的外切多聚磷酸酶或一般磷酸酶的辅助因子。