Suppr超能文献

一种用于批量处理目标运动分析的混合牛顿-拉夫逊与粒子群优化方法。

A Hybrid Newton-Raphson and Particle Swarm Optimization Method for Target Motion Analysis by Batch Processing.

作者信息

Oh Raegeun, Shi Yifang, Choi Jee Woong

机构信息

Department of Marine Science & Convergence Engineering, Hanyang University ERICA, Ansan 15588, Korea.

School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, 2nd Street, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2021 Mar 13;21(6):2033. doi: 10.3390/s21062033.

Abstract

Bearing-only target motion analysis (BO-TMA) by batch processing remains a challenge due to the lack of information on underwater target maneuvering and the nonlinearity of sensor measurements. Traditional batch estimation for BO-TMA is mainly performed based on deterministic algorithms, and studies performed with heuristic algorithms have recently been reported. However, since the two algorithms have their own advantages and disadvantages, interest in a hybrid method that complements the disadvantages and combines the advantages of the two algorithms is increasing. In this study, we proposed Newton-Raphson particle swarm optimization (NRPSO): a hybrid method that combines the Newton-Raphson method and the particle swarm optimization method, which are representative methods that utilize deterministic and heuristic algorithms, respectively. The BO-TMA performance obtained using the proposed NRPSO was tested by varying the measurement noise and number of measurements for three targets with different maneuvers. The results showed that the advantages of both methods were well combined, which improved the performance.

摘要

由于缺乏水下目标机动信息以及传感器测量的非线性,通过批处理进行的纯方位目标运动分析(BO-TMA)仍然是一个挑战。传统的BO-TMA批估计主要基于确定性算法进行,最近也有关于启发式算法的研究报道。然而,由于这两种算法各有优缺点,对一种互补缺点并结合两种算法优点的混合方法的兴趣与日俱增。在本研究中,我们提出了牛顿-拉夫逊粒子群优化算法(NRPSO):一种结合牛顿-拉夫逊方法和粒子群优化方法的混合方法,这两种方法分别是利用确定性算法和启发式算法的代表性方法。通过改变测量噪声和测量次数,对三个具有不同机动的目标进行测试,以检验使用所提出的NRPSO获得的BO-TMA性能。结果表明,两种方法的优点得到了很好的结合,从而提高了性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d21/7998210/2a4a0f63048e/sensors-21-02033-g001.jpg

相似文献

3
A hybrid gene selection method based on gene scoring strategy and improved particle swarm optimization.
BMC Bioinformatics. 2019 Jun 10;20(Suppl 8):289. doi: 10.1186/s12859-019-2773-x.
4
A combination of Newton-Raphson method and heuristics algorithms for parameter estimation in photovoltaic modules.
Heliyon. 2021 Apr 8;7(4):e06673. doi: 10.1016/j.heliyon.2021.e06673. eCollection 2021 Apr.
5
Parallelized Particle Swarm Optimization on FPGA for Realtime Ballistic Target Tracking.
Sensors (Basel). 2023 Oct 13;23(20):8456. doi: 10.3390/s23208456.
6
Software Defect Prediction Based on Hybrid Swarm Intelligence and Deep Learning.
Comput Intell Neurosci. 2021 Dec 28;2021:4997459. doi: 10.1155/2021/4997459. eCollection 2021.
10
A unified approach to statistical tomography using coordinate descent optimization.
IEEE Trans Image Process. 1996;5(3):480-92. doi: 10.1109/83.491321.

引用本文的文献

1
Intelligence-Aware Batch Processing for TMA with Bearings-Only Measurements.
Sensors (Basel). 2021 Oct 29;21(21):7211. doi: 10.3390/s21217211.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验