Suppr超能文献

用于仅方位测量的热机械分析(TMA)的智能感知批处理

Intelligence-Aware Batch Processing for TMA with Bearings-Only Measurements.

作者信息

Oliva Gabriele, Farina Alfonso, Setola Roberto

机构信息

Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

Selex-ES (retired), 00144 Rome, Italy.

出版信息

Sensors (Basel). 2021 Oct 29;21(21):7211. doi: 10.3390/s21217211.

Abstract

This paper develops a framework to track the trajectory of a target in 2D by considering a moving ownship able to measure bearing measurements. Notably, the framework allows one to incorporate additional information (e.g., obtained via intelligence) such as knowledge on the fact the target's trajectory is contained in the intersection of some sets or the fact it lies outside the union of other sets. The approach is formally characterized by providing a constrained maximum likelihood estimation (MLE) formulation and by extending the definition of the Cramér-Rao lower bound (CRLB) matrix to the case of MLE problems with inequality constraints, relying on the concept of generalized Jacobian matrix. Moreover, based on the additional information, the ownship motion is chosen by mimicking the Artificial Potential Fields technique that is typically used by mobile robots to aim at a goal (in this case, the region where the target is assumed to be) while avoiding obstacles (i.e., the region that is assumed not to intersect the target's trajectory). In order to show the effectiveness of the proposed approach, the paper is complemented by a simulation campaign where the MLE computations are carried out via an evolutionary ant colony optimization software, namely, mixed-integer distributed ant colony optimization solver (MIDACO-SOLVER). As a result, the proposed framework exhibits remarkably better performance, and in particular, we observe that the solution is less likely to remain stuck in unsatisfactory local minima during the MLE computation.

摘要

本文通过考虑一个能够测量方位测量值的移动本船,开发了一个用于跟踪二维目标轨迹的框架。值得注意的是,该框架允许纳入额外信息(例如,通过情报获得),诸如关于目标轨迹包含在某些集合的交集中或位于其他集合的并集之外这一事实的知识。该方法通过提供一个约束最大似然估计(MLE)公式,并将克拉美罗下界(CRLB)矩阵的定义扩展到具有不等式约束的MLE问题的情况来进行形式化表征,这依赖于广义雅可比矩阵的概念。此外,基于额外信息,本船运动通过模仿人工势场技术来选择,该技术通常被移动机器人用于瞄准目标(在这种情况下,即假定目标所在的区域)同时避开障碍物(即假定不与目标轨迹相交的区域)。为了展示所提方法的有效性,本文通过一个模拟活动进行补充,在该活动中,MLE计算通过一个进化蚁群优化软件,即混合整数分布式蚁群优化求解器(MIDACO - SOLVER)来执行。结果,所提框架展现出显著更好的性能,特别是,我们观察到在MLE计算期间,该解决方案不太可能被困在不令人满意的局部最小值中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8587890/9ce0d5d9275d/sensors-21-07211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验