Elhady Ahmed, Topalović Olivera, Heuer Holger
Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany.
Department of Plant Protection, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt.
Microorganisms. 2021 Mar 25;9(4):679. doi: 10.3390/microorganisms9040679.
Plant-parasitic nematodes are a major constraint on agricultural production. They significantly impede crop yield. To complete their parasitism, they need to locate, disguise, and interact with plant signals exuded in the rhizosphere of the host plant. A specific subset of the soil microbiome can attach to the surface of nematodes in a specific manner. We hypothesized that host plants recruit species of microbes as helpers against attacking nematode species, and that these helpers differ among plant species. We investigated to what extend the attached microbial species are determined by plant species, their root exudates, and how these microbes affect nematodes. We conditioned the soil microbiome in the rhizosphere of different plant species, then employed culture-independent and culture-dependent methods to study microbial attachment to the cuticle of the phytonematode . Community fingerprints of nematode-attached fungi and bacteria showed that the plant species govern the microbiome associated with the nematode cuticle. Bacteria isolated from the cuticle belonged to Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Sphingobacteria, and Firmicutes. The isolates sp. i.14, i.17, and sp. i.37 showed the highest attachment rates to the cuticle. The isolates i.24 and i.17 significantly antagonized after attachment. Significantly more bacteria attached to in microbiome suspensions from bulk soil or oat rhizosphere compared to Ethiopian mustard rhizosphere. However, the latter caused a better suppression of the nematode. Conditioning the cuticle of with root exudates significantly decreased the number of sp. i.14 attaching to the cuticle, suggesting induced changes of the cuticle structure. These findings will lead to a more knowledge-driven exploitation of microbial antagonists of plant-parasitic nematodes for plant protection.
植物寄生线虫是农业生产的主要限制因素。它们严重阻碍作物产量。为了完成寄生过程,它们需要定位、伪装并与宿主植物根际分泌的植物信号相互作用。土壤微生物群落的一个特定子集能够以特定方式附着在线虫表面。我们假设宿主植物会招募微生物物种作为对抗侵袭线虫物种的帮手,并且这些帮手在不同植物物种间存在差异。我们研究了附着的微生物物种在多大程度上由植物物种、其根系分泌物决定,以及这些微生物如何影响线虫。我们对不同植物物种根际的土壤微生物群落进行预处理,然后采用非培养和培养依赖方法研究微生物对线虫角质层的附着情况。附着在线虫上的真菌和细菌的群落指纹图谱表明,植物物种决定了与线虫角质层相关的微生物群落。从角质层分离出的细菌属于放线菌门、α-变形菌纲、β-变形菌纲、γ-变形菌纲、鞘脂杆菌纲和厚壁菌门。分离株sp. i.14、i.17和sp. i.37显示出对角质层的最高附着率。分离株i.24和i.17在附着后显著拮抗。与埃塞俄比亚芥菜根际相比,在来自大田土壤或燕麦根际的微生物群落悬浮液中,附着在[具体线虫名称未明确]上的细菌明显更多。然而,后者对线虫的抑制效果更好。用根系分泌物预处理[具体线虫名称未明确]的角质层显著减少了sp. i.14附着在角质层上的数量,表明角质层结构发生了诱导变化。这些发现将有助于更有针对性地利用植物寄生线虫的微生物拮抗剂进行植物保护。