Hwang Byung Soo, Kim Jong Sik, Kim Ju Min, Shim Tae Soup
Department of Chemical Engineering, Ajou University, Suwon 16499, Korea.
Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
Materials (Basel). 2021 Mar 4;14(5):1212. doi: 10.3390/ma14051212.
Gelation behaviors of hydrogels have provided an outlook for the development of stimuli-responsive functional materials. Of these materials, the thermogelling behavior of poly(N-isopropylacrylamide) (p(NiPAm))-based microgels exhibits a unique, reverse sol-gel transition by bulk aggregation of microgels at the lower critical solution temperature (LCST). Despite its unique phase transition behaviors, the application of this material has been largely limited to the biomedical field, and the bulk gelation behavior of microgels in the presence of colloidal additives is still open for scrutinization. Here, we provide an in-depth investigation of the unique thermogelling behaviors of p(NiPAm)-based microgels through poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) microgel (p(NiPAm-co-HEMA))-silica nanoparticle composite to expand the application possibilities of the microgel system. Thermogelling behaviors of p(NiPAm-co-HEMA) microgel with different molar ratios of N-isopropylacrylamide (NiPAm) and 2-hydroxyethyl methacrylate (HEMA), their colloidal stability under various microgel concentrations, and the ionic strength of these aqueous solutions were investigated. In addition, sol-gel transition behaviors of various p(NiPAm-co-HEMA) microgel systems were compared by analyzing their rheological properties. Finally, we incorporated silica nanoparticles to the microgel system and investigated the thermogelling behaviors of the microgel-nanoparticle composite system. The composite system exhibited consistent thermogelling behaviors in moderate conditions, which was confirmed by an optical microscope. The composite demonstrated enhanced mechanical strength at gel state, which was confirmed by analyzing rheological properties.
水凝胶的凝胶化行为为刺激响应性功能材料的发展提供了前景。在这些材料中,基于聚(N-异丙基丙烯酰胺)(p(NiPAm))的微凝胶的热凝胶化行为通过微凝胶在较低临界溶液温度(LCST)下的本体聚集表现出独特的、反向的溶胶-凝胶转变。尽管其具有独特的相变行为,但这种材料的应用在很大程度上仅限于生物医学领域,并且微凝胶在胶体添加剂存在下的本体凝胶化行为仍有待仔细研究。在这里,我们通过聚(N-异丙基丙烯酰胺-co-甲基丙烯酸2-羟乙酯)微凝胶(p(NiPAm-co-HEMA))-二氧化硅纳米颗粒复合材料对基于p(NiPAm)的微凝胶的独特热凝胶化行为进行了深入研究,以扩大微凝胶系统的应用可能性。研究了具有不同N-异丙基丙烯酰胺(NiPAm)和甲基丙烯酸2-羟乙酯(HEMA)摩尔比的p(NiPAm-co-HEMA)微凝胶的热凝胶化行为、它们在各种微凝胶浓度下的胶体稳定性以及这些水溶液的离子强度。此外,通过分析其流变学性质比较了各种p(NiPAm-co-HEMA)微凝胶系统的溶胶-凝胶转变行为。最后,我们将二氧化硅纳米颗粒引入微凝胶系统,并研究了微凝胶-纳米颗粒复合系统的热凝胶化行为。通过光学显微镜证实,该复合系统在中等条件下表现出一致的热凝胶化行为。通过分析流变学性质证实,该复合材料在凝胶状态下具有增强的机械强度。