Suppr超能文献

C-UNet:用于遥感道路提取的补充 UNet。

C-UNet: Complement UNet for Remote Sensing Road Extraction.

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Sensors (Basel). 2021 Mar 19;21(6):2153. doi: 10.3390/s21062153.

Abstract

Roads are important mode of transportation, which are very convenient for people's daily work and life. However, it is challenging to accuratly extract road information from a high-resolution remote sensing image. This paper presents a road extraction method for remote sensing images with a complement UNet (C-UNet). C-UNet contains four modules. Firstly, the standard UNet is used to roughly extract road information from remote sensing images, getting the first segmentation result; secondly, a fixed threshold is utilized to erase partial extracted information; thirdly, a multi-scale dense dilated convolution UNet (MD-UNet) is introduced to discover the complement road areas in the erased masks, obtaining the second segmentation result; and, finally, we fuse the extraction results of the first and the third modules, getting the final segmentation results. Experimental results on the Massachusetts Road dataset indicate that our C-UNet gets the higher results than the state-of-the-art methods, demonstrating its effectiveness.

摘要

道路是重要的交通方式,非常方便人们的日常工作和生活。然而,从高分辨率遥感图像中准确提取道路信息具有挑战性。本文提出了一种基于补全 UNet(C-UNet)的遥感图像道路提取方法。C-UNet 包含四个模块。首先,标准 UNet 用于从遥感图像中粗略提取道路信息,得到第一个分割结果;其次,使用固定阈值擦除部分提取的信息;第三,引入多尺度密集扩张卷积 UNet(MD-UNet)来发现擦除掩模中的互补道路区域,得到第二个分割结果;最后,融合第一和第三模块的提取结果,得到最终的分割结果。在马萨诸塞州道路数据集上的实验结果表明,我们的 C-UNet 比最先进的方法获得了更高的结果,证明了其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972e/8003503/d9316bd8cb75/sensors-21-02153-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验