GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain.
Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain.
Int J Mol Sci. 2021 Mar 19;22(6):3148. doi: 10.3390/ijms22063148.
The fight against the spread of antibiotic resistance is one of the most important challenges facing health systems worldwide. Given the limitations of current diagnostic methods, the development of fast and accurate tests for the diagnosis of viral and bacterial infections would improve patient management and treatment, as well as contribute to reducing antibiotic misuse in clinical settings. In this scenario, analysis of host transcriptomics constitutes a promising target to develop new diagnostic tests based on the host-specific response to infections. We carried out a multi-cohort meta-analysis of blood transcriptomic data available in public databases, including 11 different studies and 1209 samples from virus- ( = 695) and bacteria- ( = 514) infected patients. We applied a Parallel Regularized Regression Model Search (PReMS) on a set of previously reported genes that distinguished viral from bacterial infection to find a minimum gene expression bio-signature. This strategy allowed us to detect three genes, namely , and , that clearly differentiate groups of infection with high accuracy (training set: area under the curve (AUC) 0.86 (sensitivity: 0.81; specificity: 0.87); testing set: AUC 0.87 (sensitivity: 0.82; specificity: 0.86)). and are involved in processes related to immune response, while is related to the preservation of methylation patterns, and its expression is modulated by pathogen infections. We successfully tested this three-transcript signature in the 11 independent studies, demonstrating its high performance under different scenarios. The main advantage of this three-gene signature is the low number of genes needed to differentiate both groups of patient categories.
对抗抗生素耐药性传播的斗争是全球卫生系统面临的最重要挑战之一。鉴于当前诊断方法的局限性,开发用于病毒和细菌感染快速准确诊断的测试方法将改善患者管理和治疗,并有助于减少临床环境中的抗生素滥用。在这种情况下,分析宿主转录组学是开发基于宿主对感染的特异性反应的新诊断测试的有前途的目标。我们对公共数据库中可用的血液转录组数据进行了多队列荟萃分析,包括来自病毒感染(=695)和细菌感染(=514)患者的 11 项不同研究和 1209 个样本。我们在一组先前报道的区分病毒和细菌感染的基因上应用了并行正则化回归模型搜索(PReMS),以找到最小的基因表达生物特征。该策略使我们能够检测到三个基因,即、和,它们可以非常准确地(训练集:曲线下面积(AUC)为 0.86(敏感性:0.81;特异性:0.87);测试集:AUC 为 0.87(敏感性:0.82;特异性:0.86))区分感染组。和参与免疫反应相关过程,而与甲基化模式的保存有关,其表达受病原体感染的调节。我们在 11 项独立研究中成功测试了这个三转录本特征,证明了其在不同情况下的高性能。这个三基因特征的主要优点是区分两组患者类别所需的基因数量较少。