Suppr超能文献

基于木质素纳米颗粒的新型纳米结构用于电化学生态友好型生物传感开发。

Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco-Friendly Biosensing Development.

作者信息

Tortolini Cristina, Capecchi Eliana, Tasca Federico, Pofi Riccardo, Venneri Mary Anna, Saladino Raffaele, Antiochia Riccarda

机构信息

Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.

Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy.

出版信息

Nanomaterials (Basel). 2021 Mar 12;11(3):718. doi: 10.3390/nano11030718.

Abstract

Novel nanoarchitectures based on lignin nanoparticles (LNPs) were designed and realized for electrochemical eco-friendly biosensing development. Two types of lignin nanoparticles were utilized for the modification of a gold bare electrode, namely organosolv (OLNPs) and kraft lignin (KLNPs) nanoparticles, synthetized from a sulfur-free and a sulfur lignin, respectively. The electrochemical behavior of LNP-modified electrodes was studied using two electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the gold bare electrode, an evident decrease in the faradaic current and increase of the ΔE were observed in cyclic voltammograms. In addition, larger semicircles were registered in Nyquist plots. These results suggest a strong inhibition effect of the electron transfer reaction by LNPs layer, especially in the case of KLNPs. The modified electrodes, properly assembled with concanavalin A (ConA) and glucose oxidase (GOx), were successively tested as biosensing platforms for glucose, showing a sensitivity of (4.53 ± 0.467) and (13.74 ± 1.84) μA mM cm for Au/SAMCys/OLNPs/ConA/GOx and Au/KLNPs/ConA/GOx biosensors, respectively. Finally, different layers of the KNLPs/ConA/GOx-modified Au electrode were tested, and the three-layered Au(KNLPs/ConA/GOx) showed the best analytical performance.

摘要

基于木质素纳米颗粒(LNPs)设计并实现了新型纳米结构,用于开发电化学环保型生物传感。使用了两种类型的木质素纳米颗粒对裸金电极进行修饰,即有机溶剂木质素(OLNPs)和硫酸盐木质素(KLNPs)纳米颗粒,它们分别由无硫木质素和含硫木质素合成。采用循环伏安法(CV)和电化学阻抗谱(EIS)这两种电化学技术研究了LNP修饰电极的电化学行为。与裸金电极相比,循环伏安图中观察到法拉第电流明显降低,ΔE增大。此外,在奈奎斯特图中记录到更大的半圆。这些结果表明LNPs层对电子转移反应有强烈的抑制作用,尤其是在KLNPs的情况下。将修饰电极与伴刀豆球蛋白A(ConA)和葡萄糖氧化酶(GOx)正确组装后,相继作为葡萄糖生物传感平台进行测试,Au/SAMCys/OLNPs/ConA/GOx和Au/KLNPs/ConA/GOx生物传感器对葡萄糖的灵敏度分别为(4.53±0.467)和(13.74±1.84)μA mM cm。最后,对KNLPs/ConA/GOx修饰的金电极的不同层数进行了测试,三层Au(KNLPs/ConA/GOx)表现出最佳的分析性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d56/8001205/9366fcf4212b/nanomaterials-11-00718-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验