Departamento de Engenharia Elétrica, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
Departamento de Ingeniería de Comunicaciones, Andalucía Tech, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain.
Sensors (Basel). 2021 Mar 12;21(6):2017. doi: 10.3390/s21062017.
This work presents a method for estimating key quality indicators (KQIs) from measurements gathered at the nodes of a wireless network. The procedure employs multivariate adaptive filtering and a clustering algorithm to produce a KQI time-series suitable for post-processing by the network management system. The framework design, aimed to be applied to 5G and 6G systems, can cope with a nonstationary environment, allow fast and online training, and provide flexibility for its implementation. The concept's feasibility was evaluated using measurements collected from a live heterogeneous network, and initial results were compared to other linear regression techniques. Suggestions for modifications in the algorithms are also described, as well as directions for future research.
本工作提出了一种从无线网络节点采集的测量值中估计关键质量指标(KQI)的方法。该方法采用多元自适应滤波和聚类算法生成适用于网络管理系统进行后处理的 KQI 时间序列。该框架设计旨在应用于 5G 和 6G 系统,能够应对非平稳环境,允许快速在线训练,并为其实现提供灵活性。使用从实际异构网络中收集的测量值评估了该概念的可行性,并将初始结果与其他线性回归技术进行了比较。还描述了对算法进行修改的建议以及未来研究的方向。