Barz Bjorn, Rodner Erik, Garcia Yanira Guanche, Denzler Joachim
IEEE Trans Pattern Anal Mach Intell. 2019 May;41(5):1088-1101. doi: 10.1109/TPAMI.2018.2823766. Epub 2018 Apr 30.
Automatic detection of anomalies in space- and time-varying measurements is an important tool in several fields, e.g., fraud detection, climate analysis, or healthcare monitoring. We present an algorithm for detecting anomalous regions in multivariate spatio-temporal time-series, which allows for spotting the interesting parts in large amounts of data, including video and text data. In opposition to existing techniques for detecting isolated anomalous data points, we propose the "Maximally Divergent Intervals" (MDI) framework for unsupervised detection of coherent spatial regions and time intervals characterized by a high Kullback-Leibler divergence compared with all other data given. In this regard, we define an unbiased Kullback-Leibler divergence that allows for ranking regions of different size and show how to enable the algorithm to run on large-scale data sets in reasonable time using an interval proposal technique. Experiments on both synthetic and real data from various domains, such as climate analysis, video surveillance, and text forensics, demonstrate that our method is widely applicable and a valuable tool for finding interesting events in different types of data.
自动检测时空变化测量中的异常是多个领域的重要工具,例如欺诈检测、气候分析或医疗保健监测。我们提出了一种用于检测多元时空时间序列中异常区域的算法,该算法能够在大量数据(包括视频和文本数据)中找出有趣的部分。与现有的检测孤立异常数据点的技术不同,我们提出了“最大发散区间”(MDI)框架,用于无监督地检测与给定的所有其他数据相比具有高库尔贝克-莱布勒散度的连贯空间区域和时间间隔。在这方面,我们定义了一种无偏库尔贝克-莱布勒散度,它能够对不同大小的区域进行排序,并展示了如何使用区间提议技术使算法在合理的时间内在大规模数据集上运行。来自气候分析、视频监控和文本取证等各个领域的合成数据和真实数据实验表明,我们的方法具有广泛的适用性,是在不同类型数据中发现有趣事件的宝贵工具。