Suppr超能文献

利用机器学习研究幼儿自闭症定量检查表(Q-CHAT)以进行早期自闭症筛查。

Use of Machine Learning to Investigate the Quantitative Checklist for Autism in Toddlers (Q-CHAT) towards Early Autism Screening.

作者信息

Tartarisco Gennaro, Cicceri Giovanni, Di Pietro Davide, Leonardi Elisa, Aiello Stefania, Marino Flavia, Chiarotti Flavia, Gagliano Antonella, Arduino Giuseppe Maurizio, Apicella Fabio, Muratori Filippo, Bruneo Dario, Allison Carrie, Cohen Simon Baron, Vagni David, Pioggia Giovanni, Ruta Liliana

机构信息

National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy.

Department of Engineering, University of Messina, 98166 Messina, Italy.

出版信息

Diagnostics (Basel). 2021 Mar 22;11(3):574. doi: 10.3390/diagnostics11030574.

Abstract

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM-recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.

摘要

在过去二十年中,开发了几种筛查工具,用于在临床样本和非特定样本中检测可能患有自闭症的幼儿。其中,《幼儿自闭症定量检查表》(Q-CHAT)是一种对自闭症特征的定量且呈正态分布的测量方法,在不同环境和文化中都表现出良好的心理测量特性。最近,机器学习(ML)已应用于行为科学,以提高自闭症筛查和诊断工具的分类性能,但主要应用于儿童、青少年和成年人。在本研究中,我们使用机器学习来研究Q-CHAT在区分自闭症幼儿和非自闭症幼儿方面的准确性和可靠性。应用了五种不同的机器学习算法(随机森林(RF)、朴素贝叶斯(NB)、支持向量机(SVM)、逻辑回归(LR)和K近邻(KNN))来研究Q-CHAT的全套项目。我们的结果表明,机器学习的总体准确率达到了90%,支持向量机最有效,能够以95%的准确率对自闭症进行分类。此外,使用支持向量机递归特征消除(RFE)方法,我们选择了14个项目的子集,确保准确率为91%,而从我们和先前报告的Q-CHAT-10共有的3个最佳区分项目中获得了83%的准确率。这一证据证实了Q-CHAT的高性能和跨文化有效性,并支持应用机器学习来创建该工具的更简短、更快速的版本,同时保持高分类准确率,以便在初级保健环境中用作快速、简便且高性能的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ee/8004748/331b46c2cd10/diagnostics-11-00574-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验