Suppr超能文献

基于多导联长间期心电图和 Choi-Williams 时频分析并结合多类支持向量机分类器的心肌缺血高精度自动检测方案。

An Automated High-Accuracy Detection Scheme for Myocardial Ischemia Based on Multi-Lead Long-Interval ECG and Choi-Williams Time-Frequency Analysis Incorporating a Multi-Class SVM Classifier.

机构信息

Biomedical Engineering Department, Faculty of Engineering, Al-Nahrain University, Baghdad 10072, Iraq.

Department of Computer & Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia.

出版信息

Sensors (Basel). 2021 Mar 26;21(7):2311. doi: 10.3390/s21072311.

Abstract

Cardiovascular Disease (CVD) is a primary cause of heart problems such as angina and myocardial ischemia. The detection of the stage of CVD is vital for the prevention of medical complications related to the heart, as they can lead to heart muscle death (known as myocardial infarction). The electrocardiogram (ECG) reflects these cardiac condition changes as electrical signals. However, an accurate interpretation of these waveforms still calls for the expertise of an experienced cardiologist. Several algorithms have been developed to overcome issues in this area. In this study, a new scheme for myocardial ischemia detection with multi-lead long-interval ECG is proposed. This scheme involves an observation of the changes in ischemic-related ECG components (ST segment and PR segment) by way of the Choi-Williams time-frequency distribution to extract ST and PR features. These extracted features are mapped to a multi-class SVM classifier for training in the detection of unknown conditions to determine if they are normal or ischemic. The use of multi-lead ECG for classification and 1 min intervals instead of beats or frames contributes to improved detection performance. The classification process uses the data of 92 normal and 266 patients from four different databases. The proposed scheme delivered an overall result with 99.09% accuracy, 99.49% sensitivity, and 98.44% specificity. The high degree of classification accuracy for the different and unknown data sources used in this study reflects the flexibility, validity, and reliability of this proposed scheme. Additionally, this scheme can assist cardiologists in detecting signal abnormality with robustness and precision, and can even be used for home screening systems to provide rapid evaluation in emergency cases.

摘要

心血管疾病(CVD)是引起心绞痛和心肌缺血等心脏问题的主要原因。CVD 阶段的检测对于预防与心脏相关的医疗并发症至关重要,因为这些并发症可能导致心肌死亡(称为心肌梗死)。心电图(ECG)反映了这些心脏状况变化的电信号。然而,这些波形的准确解释仍然需要经验丰富的心脏病专家的专业知识。已经开发了几种算法来解决该领域的问题。在这项研究中,提出了一种使用多导联长间期 ECG 检测心肌缺血的新方案。该方案通过 Choi-Williams 时频分布观察缺血相关 ECG 成分(ST 段和 PR 段)的变化,以提取 ST 和 PR 特征。这些提取的特征映射到多类 SVM 分类器中进行训练,以检测未知条件,确定它们是否正常或缺血。使用多导联 ECG 进行分类和 1 分钟间隔而不是节拍或帧有助于提高检测性能。分类过程使用来自四个不同数据库的 92 个正常和 266 个患者的数据。该方案的总体结果为 99.09%的准确率、99.49%的灵敏度和 98.44%的特异性。该方案对不同和未知数据源的高度分类准确性反映了其灵活性、有效性和可靠性。此外,该方案可以帮助心脏病专家以稳健性和精确性检测信号异常,甚至可以用于家庭筛查系统,以便在紧急情况下进行快速评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c7e/8037073/3fedd68ff546/sensors-21-02311-g001.jpg

相似文献

3
Performance Evaluation of Time-Frequency Distributions for ECG Signal Analysis.
J Med Syst. 2017 Nov 29;42(1):15. doi: 10.1007/s10916-017-0871-8.
5
Cardiac arrhythmia beat classification using DOST and PSO tuned SVM.
Comput Methods Programs Biomed. 2016 Nov;136:163-77. doi: 10.1016/j.cmpb.2016.08.016. Epub 2016 Aug 29.
6
Automated Myocardial Infarction Screening Using Morphology-Based Electrocardiogram Biomarkers.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340935.
7
Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features.
Comput Methods Programs Biomed. 2019 Jul;175:9-23. doi: 10.1016/j.cmpb.2019.03.012. Epub 2019 Mar 19.
9
Olson method for locating and calculating the extent of transmural ischemic areas at risk of infarction.
J Electrocardiol. 2014 Jul-Aug;47(4):430-7. doi: 10.1016/j.jelectrocard.2014.04.005. Epub 2014 Apr 26.

引用本文的文献

1
Adaptive wavelet base selection for deep learning-based ECG diagnosis: A reinforcement learning approach.
PLoS One. 2025 Feb 3;20(2):e0318070. doi: 10.1371/journal.pone.0318070. eCollection 2025.
2
Identifying Alzheimer's disease and mild cognitive impairment with atlas-based multi-modal metrics.
Front Aging Neurosci. 2023 Aug 31;15:1212275. doi: 10.3389/fnagi.2023.1212275. eCollection 2023.
3
Cardiovascular disease/stroke risk stratification in deep learning framework: a review.
Cardiovasc Diagn Ther. 2023 Jun 30;13(3):557-598. doi: 10.21037/cdt-22-438. Epub 2023 Jun 5.
4
Optimized Solutions of Electrocardiogram Lead and Segment Selection for Cardiovascular Disease Diagnostics.
Bioengineering (Basel). 2023 May 18;10(5):607. doi: 10.3390/bioengineering10050607.
5
Advanced Time-Frequency Methods for ECG Waves Recognition.
Diagnostics (Basel). 2023 Jan 13;13(2):308. doi: 10.3390/diagnostics13020308.
6
An Adaptive ECG Noise Removal Process Based on Empirical Mode Decomposition (EMD).
Contrast Media Mol Imaging. 2022 Aug 17;2022:3346055. doi: 10.1155/2022/3346055. eCollection 2022.
7
[ST segment morphological classification based on support vector machine multi feature fusion].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Aug 25;39(4):702-712. doi: 10.7507/1001-5515.202110015.

本文引用的文献

1
A Robust Multilevel DWT Densely Network for Cardiovascular Disease Classification.
Sensors (Basel). 2020 Aug 24;20(17):4777. doi: 10.3390/s20174777.
3
Holiday and weekend effects on mortality for acute myocardial infarction in Shanxi, China: a cross-sectional study.
Int J Public Health. 2020 Jul;65(6):847-857. doi: 10.1007/s00038-020-01443-x. Epub 2020 Jul 31.
4
Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals.
Comput Biol Med. 2020 Mar;118:103632. doi: 10.1016/j.compbiomed.2020.103632. Epub 2020 Jan 30.
5
Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System.
Sensors (Basel). 2019 Mar 28;19(7):1509. doi: 10.3390/s19071509.
6
Automatic QRS complex detection using two-level convolutional neural network.
Biomed Eng Online. 2018 Jan 29;17(1):13. doi: 10.1186/s12938-018-0441-4.
7
Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
Comput Biol Med. 2018 Mar 1;94:19-26. doi: 10.1016/j.compbiomed.2017.12.023. Epub 2018 Jan 2.
8
Performance Evaluation of Time-Frequency Distributions for ECG Signal Analysis.
J Med Syst. 2017 Nov 29;42(1):15. doi: 10.1007/s10916-017-0871-8.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验