Suppr超能文献

用于心血管疾病诊断的心电图导联与节段选择的优化解决方案

Optimized Solutions of Electrocardiogram Lead and Segment Selection for Cardiovascular Disease Diagnostics.

作者信息

Shi Jiguang, Li Zhoutong, Liu Wenhan, Zhang Huaicheng, Guo Qianxi, Chang Sheng, Wang Hao, He Jin, Huang Qijun

机构信息

School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.

出版信息

Bioengineering (Basel). 2023 May 18;10(5):607. doi: 10.3390/bioengineering10050607.

Abstract

Most of the existing multi-lead electrocardiogram (ECG) detection methods are based on all 12 leads, which undoubtedly results in a large amount of calculation and is not suitable for the application in portable ECG detection systems. Moreover, the influence of different lead and heartbeat segment lengths on the detection is not clear. In this paper, a novel Genetic Algorithm-based ECG Leads and Segment Length Optimization (GA-LSLO) framework is proposed, aiming to automatically select the appropriate leads and input ECG length to achieve optimized cardiovascular disease detection. GA-LSLO extracts the features of each lead under different heartbeat segment lengths through the convolutional neural network and uses the genetic algorithm to automatically select the optimal combination of ECG leads and segment length. In addition, the lead attention module (LAM) is proposed to weight the features of the selected leads, which improves the accuracy of cardiac disease detection. The algorithm is validated on the ECG data from the Huangpu Branch of Shanghai Ninth People's Hospital (defined as the SH database) and the open-source Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTB database). The accuracy for detection of arrhythmia and myocardial infarction under the inter-patient paradigm is 99.65% (95% confidence interval: 99.20-99.76%) and 97.62% (95% confidence interval: 96.80-98.16%), respectively. In addition, ECG detection devices are designed using Raspberry Pi, which verifies the convenience of hardware implementation of the algorithm. In conclusion, the proposed method achieves good cardiovascular disease detection performance. It selects the ECG leads and heartbeat segment length with the lowest algorithm complexity while ensuring classification accuracy, which is suitable for portable ECG detection devices.

摘要

现有的大多数多导联心电图(ECG)检测方法都是基于全部12导联,这无疑会导致大量计算,不适用于便携式ECG检测系统。此外,不同导联和心跳段长度对检测的影响尚不清楚。本文提出了一种基于遗传算法的心电图导联和段长优化(GA-LSLO)框架,旨在自动选择合适的导联和输入ECG长度,以实现优化的心血管疾病检测。GA-LSLO通过卷积神经网络提取不同心跳段长度下各导联的特征,并利用遗传算法自动选择ECG导联和段长的最优组合。此外,还提出了导联注意力模块(LAM)对所选导联的特征进行加权,提高了心脏病检测的准确率。该算法在上海第九人民医院黄浦分院的ECG数据(定义为SH数据库)和开源的德国联邦物理技术研究院诊断ECG数据库(PTB数据库)上进行了验证。在患者间范式下,心律失常和心肌梗死检测的准确率分别为99.65%(95%置信区间:99.20-99.76%)和97.62%(95%置信区间:96.80-98.16%)。此外,使用树莓派设计了ECG检测设备,验证了该算法硬件实现的便利性。综上所述,所提方法取得了良好的心血管疾病检测性能。它在保证分类准确率的同时,选择了算法复杂度最低的ECG导联和心跳段长度,适用于便携式ECG检测设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a249/10215604/1e43168a6610/bioengineering-10-00607-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验