Suppr超能文献

基于加权插值雷达精度建模的数据驱动目标车辆估计

Data-Driven Object Vehicle Estimation by Radar Accuracy Modeling with Weighted Interpolation.

作者信息

Choi Woo Young, Yang Jin Ho, Chung Chung Choo

机构信息

Departerment of Electrical Engineering, Hanyang University, Seoul 04763, Korea.

Division of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea.

出版信息

Sensors (Basel). 2021 Mar 26;21(7):2317. doi: 10.3390/s21072317.

Abstract

For accurate object vehicle estimation using radar, there are two fundamental problems: measurement uncertainties in calculating an object's position with a virtual polygon box and latency due to commercial radar tracking algorithms. We present a data-driven object vehicle estimation scheme to solve measurement uncertainty and latency problems in radar systems. A radar accuracy model and latency coordination are proposed to reduce the tracking error. We first design data-driven radar accuracy models to improve the accuracy of estimation determined by the object vehicle's position. The proposed model solves the measurement uncertainty problem within a feasible set for error covariance. The latency coordination is developed by analyzing the position error according to the relative velocity. The position error by latency is stored in a feasible set for relative velocity, and the solution is calculated from the given relative velocity. Removing the measurement uncertainty and latency of the radar system allows for a weighted interpolation to be applied to estimate the position of the object vehicle. Our method is tested by a scenario-based estimation experiment to validate the usefulness of the proposed data-driven object vehicle estimation scheme. We confirm that the proposed estimation method produces improved performance over the conventional radar estimation and previous methods.

摘要

为了使用雷达准确估计目标车辆,存在两个基本问题:使用虚拟多边形框计算物体位置时的测量不确定性以及由于商业雷达跟踪算法导致的延迟。我们提出了一种数据驱动的目标车辆估计方案,以解决雷达系统中的测量不确定性和延迟问题。提出了一种雷达精度模型和延迟协调方法来减少跟踪误差。我们首先设计数据驱动的雷达精度模型,以提高由目标车辆位置确定的估计精度。所提出的模型在误差协方差的可行集内解决了测量不确定性问题。通过根据相对速度分析位置误差来开发延迟协调。延迟引起的位置误差存储在相对速度的可行集中,并根据给定的相对速度计算解决方案。消除雷达系统的测量不确定性和延迟允许应用加权插值来估计目标车辆的位置。我们的方法通过基于场景的估计实验进行测试,以验证所提出的数据驱动目标车辆估计方案的有效性。我们确认,所提出的估计方法比传统雷达估计和先前方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acb/8037990/98c3a4082f2d/sensors-21-02317-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验