Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, 01003, Massachusetts, USA.
BMC Med Res Methodol. 2021 Apr 3;21(1):65. doi: 10.1186/s12874-021-01236-7.
Linear mixed models (LMM) are a common approach to analyzing data from cluster randomized trials (CRTs). Inference on parameters can be performed via Wald tests or likelihood ratio tests (LRT), but both approaches may give incorrect Type I error rates in common finite sample settings. The impact of different combinations of cluster size, number of clusters, intraclass correlation coefficient (ICC), and analysis approach on Type I error rates has not been well studied. Reviews of published CRTs find that small sample sizes are not uncommon, so the performance of different inferential approaches in these settings can guide data analysts to the best choices.
Using a random-intercept LMM stucture, we use simulations to study Type I error rates with the LRT and Wald test with different degrees of freedom (DF) choices across different combinations of cluster size, number of clusters, and ICC.
Our simulations show that the LRT can be anti-conservative when the ICC is large and the number of clusters is small, with the effect most pronouced when the cluster size is relatively large. Wald tests with the between-within DF method or the Satterthwaite DF approximation maintain Type I error control at the stated level, though they are conservative when the number of clusters, the cluster size, and the ICC are small.
Depending on the structure of the CRT, analysts should choose a hypothesis testing approach that will maintain the appropriate Type I error rate for their data. Wald tests with the Satterthwaite DF approximation work well in many circumstances, but in other cases the LRT may have Type I error rates closer to the nominal level.
线性混合模型(LMM)是分析群组随机试验(CRT)数据的常用方法。可以通过 Wald 检验或似然比检验(LRT)进行参数推断,但这两种方法在常见的有限样本情况下都可能导致不正确的Ⅰ类错误率。不同的聚类大小、聚类数量、组内相关系数(ICC)和分析方法的组合对Ⅰ类错误率的影响尚未得到很好的研究。对已发表的 CRT 综述发现,小样本量并不罕见,因此不同推断方法在这些情况下的性能可以为数据分析人员提供最佳选择。
使用随机截距 LMM 结构,我们使用模拟研究了 LRT 和 Wald 检验在不同聚类大小、聚类数量和 ICC 组合下不同自由度(DF)选择的Ⅰ类错误率。
我们的模拟结果表明,当 ICC 较大且聚类数量较小时,LRT 可能会出现反保守性,当聚类大小相对较大时,效果最为明显。采用组间-组内 DF 方法或 Satterthwaite DF 逼近的 Wald 检验可以在规定的水平上控制Ⅰ类错误率,但当聚类数量、聚类大小和 ICC 较小时,它们会保守。
根据 CRT 的结构,分析人员应选择一种将保持适当Ⅰ类错误率的假设检验方法。在许多情况下,Satterthwaite DF 逼近的 Wald 检验效果很好,但在其他情况下,LRT 的Ⅰ类错误率可能更接近名义水平。