Suppr超能文献

S-I-R疾病动态的混合马尔可夫链模型

Hybrid Markov chain models of S-I-R disease dynamics.

作者信息

Rebuli Nicolas P, Bean N G, Ross J V

机构信息

School of Mathematical Sciences and the ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, SA, 5005, Australia.

出版信息

J Math Biol. 2017 Sep;75(3):521-541. doi: 10.1007/s00285-016-1085-2. Epub 2016 Dec 24.

Abstract

Deterministic epidemic models are attractive due to their compact nature, allowing substantial complexity with computational efficiency. This partly explains their dominance in epidemic modelling. However, the small numbers of infectious individuals at early and late stages of an epidemic, in combination with the stochastic nature of transmission and recovery events, are critically important to understanding disease dynamics. This motivates the use of a stochastic model, with continuous-time Markov chains being a popular choice. Unfortunately, even the simplest Markovian S-I-R model-the so-called general stochastic epidemic-has a state space of order [Formula: see text], where N is the number of individuals in the population, and hence computational limits are quickly reached. Here we introduce a hybrid Markov chain epidemic model, which maintains the stochastic and discrete dynamics of the Markov chain in regions of the state space where they are of most importance, and uses an approximate model-namely a deterministic or a diffusion model-in the remainder of the state space. We discuss the evaluation, efficiency and accuracy of this hybrid model when approximating the distribution of the duration of the epidemic and the distribution of the final size of the epidemic. We demonstrate that the computational complexity is [Formula: see text] and that under suitable conditions our approximations are highly accurate.

摘要

确定性流行病模型因其简洁性而颇具吸引力,能够在保证计算效率的同时具备相当的复杂性。这在一定程度上解释了它们在流行病建模中的主导地位。然而,在流行病的早期和晚期,感染个体数量较少,再加上传播和恢复事件的随机性,对于理解疾病动态至关重要。这促使人们使用随机模型,连续时间马尔可夫链是一种常用的选择。不幸的是,即使是最简单的马尔可夫S - I - R模型——即所谓的一般随机流行病模型——其状态空间的阶数为[公式:见原文],其中N是人群中的个体数量,因此很快就会达到计算极限。在此,我们引入一种混合马尔可夫链流行病模型,该模型在状态空间中最重要的区域保持马尔可夫链的随机和离散动态,并在状态空间的其余部分使用近似模型——即确定性模型或扩散模型。我们讨论了在近似流行病持续时间分布和流行病最终规模分布时,这种混合模型的评估、效率和准确性。我们证明计算复杂度为[公式:见原文],并且在合适的条件下我们的近似非常准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验