Suppr超能文献

开发一种诊断模型,以识别小脑脑桥角病变高危患者。

Development of a diagnostic model to identify patients at high risk for cerebellopontine angle lesions.

机构信息

Department of Otolaryngology, Radboud Institute for Health Sciences, Radboud University Medical Center, Philips van Leydenlaan 15, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.

Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands.

出版信息

Eur Arch Otorhinolaryngol. 2022 Mar;279(3):1285-1294. doi: 10.1007/s00405-021-06778-6. Epub 2021 Apr 3.

Abstract

PURPOSE

To develop a diagnostic model to identify patients at high risk of a CPA lesion.

METHODS

A consecutive cohort of patients with AAD referred by a general practitioner, who underwent their first MRI examination of the CPA between 2005 and 2015 was included. Demographics, symptoms, findings during physical examination, and pure-tone audiometry were used as potential predictors. The presence of a CPA lesion was used as outcome.

RESULTS

We analyzed data of 2,214 patients, detecting 73 CPA lesions in 69 (3.1%) patients. The final model contained eleven variables, namely gender [male] [OR 1.055 (95% CI 0.885-1.905)], sudden onset of hearing loss [OR 0.768 (95% CI 0.318-0.992)], gradual onset of hearing loss [OR 1.069 (95% CI 0.500-1.450)], unilateral tinnitus [OR 0.682 (95% CI 0.374-0.999)], complaints of unilateral aural fullness [OR 1.006 (95% CI 0.783-2.155)], instability [OR 1.006 (95% CI 0.580-2.121)], headache [OR 0.959 (95% CI 0.059-1.090)], facial numbness [OR 2.746 (95% CI 0.548-11.085)], facial nerve dysfunction during physical examination [OR 1.024 (95% CI 0.280-3.702)], and asymmetry in BC at 1 kHz [OR 1.013 (95% CI 1.000-1.027)] and 4 kHz [OR 1.008 (95% CI 1.000-1.026)].

CONCLUSION

The proposed diagnostic model is a first step in selecting patients with a high risk of a CPA lesion among those with AAD. It needs to be externally validated prior to its implementation in clinical practice.

摘要

目的

开发一种诊断模型,以识别患有 CPA 病变高风险的患者。

方法

纳入了 2005 年至 2015 年间由全科医生转诊的 AAD 患者连续队列,这些患者接受了首次 CPA 的 MRI 检查。将人口统计学资料、症状、体格检查结果和纯音听阈测试作为潜在预测因素。将 CPA 病变的存在作为结局。

结果

我们分析了 2214 例患者的数据,在 69 例(3.1%)患者中发现了 73 个 CPA 病变。最终模型包含 11 个变量,即性别[男性][比值比(OR)1.055(95%置信区间(CI)0.885-1.905)]、突发性听力损失[OR 0.768(95% CI 0.318-0.992)]、进行性听力损失[OR 1.069(95% CI 0.500-1.450)]、单侧耳鸣[OR 0.682(95% CI 0.374-0.999)]、单侧耳闷感的主诉[OR 1.006(95% CI 0.783-2.155)]、不稳定性[OR 1.006(95% CI 0.580-2.121)]、头痛[OR 0.959(95% CI 0.059-1.090)]、面部麻木[OR 2.746(95% CI 0.548-11.085)]、体格检查时面神经功能障碍[OR 1.024(95% CI 0.280-3.702)]以及 1 kHz[OR 1.013(95% CI 1.000-1.027)]和 4 kHz[OR 1.008(95% CI 1.000-1.026)]时 BC 的不对称。

结论

该诊断模型是在 AAD 患者中选择患有 CPA 病变高风险患者的第一步。在将其应用于临床实践之前,需要进行外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2426/8897319/9cf3ac48e911/405_2021_6778_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验