Suppr超能文献

采用钆延迟增强心血管磁共振对心脏转移瘤进行风险分层:低增强提示肿瘤无血管生成的预后影响。

Risk stratification of cardiac metastases using late gadolinium enhancement cardiovascular magnetic resonance: prognostic impact of hypo-enhancement evidenced tumor avascularity.

机构信息

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

J Cardiovasc Magn Reson. 2021 Apr 5;23(1):42. doi: 10.1186/s12968-021-00727-2.

Abstract

BACKGROUND

Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (C) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity.

METHODS

Advanced (stage IV) systemic cancer patients with and without C matched (1:1) by cancer etiology underwent a standardized CMR protocol. C was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern.

RESULTS

224 patients were studied, including 112 patients with C and unaffected (C -) controls matched for systemic cancer etiology/stage. C enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing C (p < 0.001)-paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with C (hazard ratio [HR] = 1.64 [CI 1.17-2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing C had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous C (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23-3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53-2.33], p = 0.79).

CONCLUSIONS

Contrast-enhancement pattern and location of C on CMR impacts prognosis. Embolic events vary by C location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement-a marker of tumor avascularity on LGE-CMR-is a novel marker of increased mortality risk.

摘要

背景

晚期钆增强(LGE)心血管磁共振(CMR)广泛用于识别心脏肿瘤,其诊断依据是病变的增强源于病灶的血管生成:增强模式对临床结局的影响尚不清楚。本研究旨在确定 LGE-CMR 上心脏转移(C)的增强模式是否会影响预后,并重点关注异质性病变增强作为肿瘤无血管性的标志物。

方法

根据病变增强,采用 LGE-CMR 标准确定高级(IV 期)全身癌症患者中的 C,并按癌症病因进行 1:1 配对;进一步根据定量(对比噪声比(CNR);信噪比(SNR))分析将增强模式分类为异质性(增强和非增强成分)或弥漫性,并评估。通过病变位置和对比增强模式测试栓塞事件和死亡率。

结果

共研究了 224 例患者,包括 112 例 C 患者和 112 例匹配的全身癌症病因/分期的无 C 对照组。C 的增强模式不同(53%异质性,47%弥漫性)。定量分析与病变分类一致;异质性增强的 C 的 CNR 更高,SNR 更低(p<0.001)-基于线性尺寸的大小也更大(p<0.05)。病变位置不影响增强模式(p=NS)。弥漫性和异质性病变患者的栓塞事件相似(p=NS),但病变位置不同:右侧病变患者的肺栓塞发生率高 3 倍(20%比 6%,p=0.02);左侧病变患者的发生率与对照组相似(4%比 5%,p=1.00)。与对照组相比,C 患者的死亡率更高(风险比[HR] 1.64[CI 1.17-2.29],p=0.004),但增强模式不同:弥漫性增强的 C 与对照组的死亡率相当(p=0.21),而异质性 C 的预后较差(p=0.005),且异质性增强的预测能力更强(HR 1.97[CI 1.23-3.15],p=0.005)比病变大小(HR 每增加 10 cm 为 1.11[CI 0.53-2.33],p=0.79)。

结论

CMR 上 C 的增强模式和位置会影响预后。栓塞事件的发生取决于 C 的位置,右侧病变发生 PE 的可能性最大。LGE-CMR 上的异质性增强——肿瘤无血管性的标志物——是死亡率增加风险的一个新标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b22/8020547/acf12dcff05e/12968_2021_727_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验