Suppr超能文献

预测大流行:基于深度卷积神经网络对Covid-19相关大规模推文的情感评估与预测分析

Predicting the pandemic: sentiment evaluation and predictive analysis from large-scale tweets on Covid-19 by deep convolutional neural network.

作者信息

Das Sourav, Kolya Anup Kumar

机构信息

Department of Computer Applications, University of Engineering & Management Kolkata, New Town, Kolkata, India.

Department of Computer Science and Engineering, RCC Institute of Information Technology, Beleghata, Kolkata, India.

出版信息

Evol Intell. 2022;15(3):1913-1934. doi: 10.1007/s12065-021-00598-7. Epub 2021 Mar 30.

Abstract

Engaging deep neural networks for textual sentiment analysis is an extensively practiced domain of research. Textual sentiment classification harnesses the full computational potential of deep learning models. Typically, these research works are carried either with a popular open-source data corpus, or self-extracted short phrase texts from Twitter, Reddit, or web-scrapped text data from other resources. Rarely do we see a large amount of data on a current ongoing event is being collected and cultured further. Also, an even more complex task would be to model the data from a currently ongoing event, not only for scaling the sentiment accuracy but also for making a predictive analysis for the same. In this paper, we propose a novel approach for achieving sentiment evaluation accuracy by using a deep neural network on live-streamed tweets on Coronavirus and future case growth prediction. We develop a large tweet corpus exclusively based on the Coronavirus tweets. We split the data into train and test sets, alongside we perform polarity classification and trend analysis. The refined outcome from the trend analysis helps to train the data to provide an incremental learning curvature for our neural network, and we obtain an accuracy of 90.67%. Finally, we provide a statistical-based future prediction for Coronavirus cases growth. Not only our model outperforms several previous state-of-art experiments in overall sentiment accuracy comparison for similar tasks, but it also maintains a throughout performance stability among all the test cases when tested with several popular open-source text corpora.

摘要

将深度神经网络应用于文本情感分析是一个广泛实践的研究领域。文本情感分类利用了深度学习模型的全部计算潜力。通常,这些研究工作要么使用流行的开源数据语料库,要么从推特、Reddit 中自提取短语文本,或者从其他资源中网络抓取文本数据。我们很少看到针对当前正在发生的事件收集大量数据并进一步进行培养。此外,一项更复杂的任务是对当前正在发生的事件的数据进行建模,不仅是为了提高情感准确性,也是为了对其进行预测分析。在本文中,我们提出了一种新颖的方法,通过对关于冠状病毒的实时推文使用深度神经网络来实现情感评估准确性以及未来病例增长预测。我们专门基于冠状病毒推文开发了一个大型推文语料库。我们将数据分为训练集和测试集,同时进行极性分类和趋势分析。趋势分析的精炼结果有助于训练数据,为我们的神经网络提供增量学习曲线,并且我们获得了 90.67%的准确率。最后,我们对冠状病毒病例增长提供基于统计的未来预测。在类似任务的整体情感准确性比较中,我们的模型不仅优于之前的几个先进实验,而且在用几个流行的开源文本语料库进行测试时,在所有测试案例中都保持了整体性能的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6113/8007226/9f77b15b1297/12065_2021_598_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验