Suppr超能文献

通过深度学习改进基于序列的α-螺旋跨膜蛋白相互作用位点预测

Improved sequence-based prediction of interaction sites in α-helical transmembrane proteins by deep learning.

作者信息

Sun Jianfeng, Frishman Dmitrij

机构信息

Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany.

出版信息

Comput Struct Biotechnol J. 2021 Mar 9;19:1512-1530. doi: 10.1016/j.csbj.2021.03.005. eCollection 2021.

Abstract

Interactions between transmembrane (TM) proteins are fundamental for a wide spectrum of cellular functions, but precise molecular details of these interactions remain largely unknown due to the scarcity of experimentally determined three-dimensional complex structures. Computational techniques are therefore required for a large-scale annotation of interaction sites in TM proteins. Here, we present a novel deep-learning approach, DeepTMInter, for sequence-based prediction of interaction sites in α-helical TM proteins based on their topological, physiochemical, and evolutionary properties. Using a combination of ultra-deep residual neural networks with a stacked generalization ensemble technique DeepTMInter significantly outperforms existing methods, achieving the AUC/AUCPR values of 0.689/0.598. Across the main functional families of human transmembrane proteins, the percentage of amino acid sites predicted to be involved in interactions typically ranges between 10% and 25%, and up to 30% in ion channels. DeepTMInter is available as a standalone package at https://github.com/2003100127/deeptminter. The training and benchmarking datasets are available at https://data.mendeley.com/datasets/2t8kgwzp35.

摘要

跨膜(TM)蛋白之间的相互作用是多种细胞功能的基础,但由于实验确定的三维复合物结构稀缺,这些相互作用的精确分子细节在很大程度上仍不清楚。因此,需要计算技术来大规模注释TM蛋白中的相互作用位点。在这里,我们提出了一种新的深度学习方法DeepTMInter,用于基于α螺旋TM蛋白的拓扑、物理化学和进化特性,对其相互作用位点进行基于序列的预测。通过将超深残差神经网络与堆叠泛化集成技术相结合,DeepTMInter显著优于现有方法,实现了0.689/0.598的AUC/AUCPR值。在人类跨膜蛋白的主要功能家族中,预测参与相互作用的氨基酸位点百分比通常在10%至25%之间,在离子通道中高达30%。DeepTMInter可作为独立软件包在https://github.com/2003100127/deeptminter获取。训练和基准数据集可在https://data.mendeley.com/datasets/2t8kgwzp35获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9338/7985279/4c6ac4413afd/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验