Peter Olumuyiwa James, Qureshi Sania, Yusuf Abdullahi, Al-Shomrani Mohammed, Idowu Abioye Abioye
Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro, 76062 Sindh, Pakistan.
Results Phys. 2021 May;24:104098. doi: 10.1016/j.rinp.2021.104098. Epub 2021 Mar 31.
We propose a new mathematical model to investigate the recent outbreak of the coronavirus disease (COVID-19). The model is studied qualitatively using stability theory of differential equations and the basic reproductive number that represents an epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. The global asymptotic stability conditions for the disease free equilibrium are obtained. The real COVID-19 incidence data entries from 01 July, 2020 to 14 August, 2020 in the country of Pakistan are used for parameter estimation thereby getting fitted values for the biological parameters. Sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. To view more features of the state variables in the proposed model, we perform numerical simulations by using different values of some essential parameters. Moreover, profiles of the reproduction number through contour plots have been biologically explained.
我们提出了一种新的数学模型来研究近期冠状病毒病(COVID-19)的爆发情况。利用微分方程稳定性理论对该模型进行了定性研究,并从下一代矩阵的最大特征值中获得了代表疫情指标的基本再生数。得到了无病平衡点的全局渐近稳定性条件。利用巴基斯坦2020年7月1日至2020年8月14日的实际COVID-19发病率数据进行参数估计,从而得到生物学参数的拟合值。进行敏感性分析以确定所提出模型中最敏感的参数。为了观察所提出模型中状态变量的更多特征,我们使用一些基本参数的不同值进行了数值模拟。此外,还从生物学角度解释了通过等高线图得到的再生数曲线。