Suppr超能文献

COVID-19 大流行的双剂量疫苗接种数学模型。

Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination.

机构信息

Department of Mathematical and Computer Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria.

Department of Epidemiology and Biostatistics, School of Public Health, University of Medical Sciences, Ondo City, Ondo State, Nigeria.

出版信息

Acta Biotheor. 2023 Mar 6;71(2):9. doi: 10.1007/s10441-023-09460-y.

Abstract

This paper is concerned with the formulation and analysis of an epidemic model of COVID-19 governed by an eight-dimensional system of ordinary differential equations, by taking into account the first dose and the second dose of vaccinated individuals in the population. The developed model is analyzed and the threshold quantity known as the control reproduction number [Formula: see text] is obtained. We investigate the equilibrium stability of the system, and the COVID-free equilibrium is said to be locally asymptotically stable when the control reproduction number is less than unity, and unstable otherwise. Using the least-squares method, the model is calibrated based on the cumulative number of COVID-19 reported cases and available information about the mass vaccine administration in Malaysia between the 24th of February 2021 and February 2022. Following the model fitting and estimation of the parameter values, a global sensitivity analysis was performed by using the Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters on the threshold quantities. The result shows that the effective transmission rate [Formula: see text], the rate of first vaccine dose [Formula: see text], the second dose vaccination rate [Formula: see text] and the recovery rate due to the second dose of vaccination [Formula: see text] are the most influential of all the model parameters. We further investigate the impact of these parameters by performing a numerical simulation on the developed COVID-19 model. The result of the study shows that adhering to the preventive measures has a huge impact on reducing the spread of the disease in the population. Particularly, an increase in both the first and second dose vaccination rates reduces the number of infected individuals, thus reducing the disease burden in the population.

摘要

本文关注的是一个由 8 个常微分方程组成的 COVID-19 传染病模型的建立和分析,同时考虑了人群中接种第一剂和第二剂疫苗的个体。所开发的模型进行了分析,并得到了称为控制繁殖数 [Formula: see text]的阈值量。我们研究了系统的平衡点稳定性,当控制繁殖数小于 1 时,COVID-自由平衡点是局部渐近稳定的,否则是不稳定的。我们使用最小二乘法,根据 2021 年 2 月 24 日至 2022 年 2 月期间马来西亚报告的 COVID-19 累计病例数和大规模疫苗接种的可用信息,对模型进行校准。在模型拟合和参数值估计之后,通过使用偏秩相关系数 (PRCC) 进行全局敏感性分析,确定对阈值量影响最大的参数。结果表明,有效传播率 [Formula: see text]、第一剂疫苗接种率 [Formula: see text]、第二剂疫苗接种率 [Formula: see text]和第二剂疫苗接种后的恢复率 [Formula: see text]是所有模型参数中最具影响力的。我们通过对所开发的 COVID-19 模型进行数值模拟,进一步研究了这些参数的影响。研究结果表明,坚持预防措施对减少疾病在人群中的传播有巨大影响。特别是,第一剂和第二剂疫苗接种率的提高都减少了感染者的数量,从而减轻了人群中的疾病负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca5d/9986676/0020a6e8770a/10441_2023_9460_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验