Suppr超能文献

离散分数阶差分COVID-19流行模型中的预测动力学建模与平衡点稳定性

Predictive dynamical modeling and stability of the equilibria in a discrete fractional difference COVID-19 epidemic model.

作者信息

Chu Yu-Ming, Rashid Saima, Akdemir Ahmet Ocak, Khalid Aasma, Baleanu Dumitru, Al-Sinan Bushra R, Elzibar O A I

机构信息

Department of Mathematics, Huzhou University, Huzhou, 313000, China.

Department of Mathematics, Government College University, Faisalabad 38000, Pakistan.

出版信息

Results Phys. 2023 Jun;49:106467. doi: 10.1016/j.rinp.2023.106467. Epub 2023 Apr 28.

Abstract

The SARSCoV-2 virus, also known as the coronavirus-2, is the consequence of COVID-19, a severe acute respiratory syndrome. Droplets from an infectious individual are how the pathogen is transmitted from one individual to another and occasionally, these particles can contain toxic textures that could also serve as an entry point for the pathogen. We formed a discrete fractional-order COVID-19 framework for this investigation using information and inferences from Thailand. To combat the illnesses, the region has implemented mandatory vaccination, interpersonal stratification and mask distribution programs. As a result, we divided the vulnerable people into two groups: those who support the initiatives and those who do not take the influence regulations seriously. We analyze endemic problems and common data while demonstrating the threshold evolution defined by the fundamental reproductive quantity . Employing the mean general interval, we have evaluated the configuration value systems in our framework. Such a framework has been shown to be adaptable to changing pathogen populations over time. The Picard Lindelöf technique is applied to determine the existence-uniqueness of the solution for the proposed scheme. In light of the relationship between the and the consistency of the fixed points in this framework, several theoretical conclusions are made. Numerous numerical simulations are conducted to validate the outcome.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒,也被称为冠状病毒2,是导致新型冠状病毒肺炎(COVID-19)的病原体。传染性个体的飞沫是该病原体在个体间传播的方式,偶尔,这些颗粒可能含有有毒物质,也可能成为病原体的侵入点。我们利用来自泰国的信息和推断,为此项研究构建了一个离散分数阶COVID-19框架。为了对抗这些疾病,该地区实施了强制疫苗接种、人际分层和口罩分发计划。因此,我们将易感染人群分为两组:支持这些举措的人和不认真遵守影响规定的人。我们在分析地方病问题和常见数据的同时,展示了由基本繁殖数定义的阈值演变。利用平均一般间隔,我们评估了框架中的配置值系统。这样的框架已被证明能够适应病原体种群随时间的变化。应用皮卡德-林德洛夫技术来确定所提出方案解的存在唯一性。根据该框架中基本繁殖数与不动点一致性之间的关系,得出了一些理论结论。进行了大量数值模拟以验证结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbf7/10140436/d80636a4bb65/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验