Suppr超能文献

极低出生体重儿支气管肺发育不良预测列线图的开发与验证

Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants.

作者信息

Zhang Jingdi, Luo Chenghan, Lei Mengyuan, Shi Zanyang, Cheng Xinru, Wang Lili, Shen Min, Zhang Yixia, Zhao Min, Wang Li, Zhang Shanshan, Mao Fengxia, Zhang Ju, Xu Qianya, Han Suge, Zhang Qian

机构信息

Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Orthopedics Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Pediatr. 2021 Mar 19;9:648828. doi: 10.3389/fped.2021.648828. eCollection 2021.

Abstract

Bronchopulmonary dysplasia is a common pulmonary disease in newborns and is one of the main causes of death. The aim of this study was to build a new simple-to-use nomogram to screen high-risk populations. In this single-center retrospective study performed from January 2017 to December 2020, we reviewed data on very-low-birth-weight infants whose gestational ages were below 32 weeks. LASSO regression was used to select variables for the risk model. Then, we used multivariable logistic regression to build the prediction model incorporating these selected features. Discrimination was assessed by the C-index, and and calibration of the model was assessed by and calibration curve and the Hosmer-Lemeshow test. The LASSO regression identified gestational age, duration of ventilation and serum NT-proBNP in the 1st week as significant predictors of BPD. The nomogram-illustrated model showed good discrimination and calibration. The C-index was 0.853 (95% CI: 0.851-0.854) in the training set and 0.855 (95% CI: 0.77-0.94) in the validation set. The calibration curve and Hosmer-Lemeshow test results showed good calibration between the predictions of the nomogram and the actual observations. We demonstrated a simple-to-use nomogram for predicting BPD in the early stage. It may help clinicians recognize high-risk populations.

摘要

支气管肺发育不良是新生儿常见的肺部疾病,也是主要死因之一。本研究的目的是构建一种新型且易于使用的列线图,以筛查高危人群。在这项于2017年1月至2020年12月进行的单中心回顾性研究中,我们回顾了胎龄低于32周的极低出生体重儿的数据。采用LASSO回归为风险模型选择变量。然后,我们使用多变量逻辑回归构建包含这些选定特征的预测模型。通过C指数评估区分度,并通过校准曲线和Hosmer-Lemeshow检验评估模型的校准情况。LASSO回归确定胎龄、通气时间和第1周血清NT-proBNP是支气管肺发育不良的重要预测因素。列线图所示模型显示出良好的区分度和校准情况。训练集中的C指数为0.853(95%CI:0.851-0.854),验证集中为0.855(95%CI:0.77-0.94)。校准曲线和Hosmer-Lemeshow检验结果显示列线图预测与实际观察结果之间具有良好的校准。我们展示了一种用于早期预测支气管肺发育不良的易于使用的列线图。它可能有助于临床医生识别高危人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ccf/8017311/486e57407e9a/fped-09-648828-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验