Suppr超能文献

使用大语言模型在人机对话中进行实时情感生成

Real-time emotion generation in human-robot dialogue using large language models.

作者信息

Mishra Chinmaya, Verdonschot Rinus, Hagoort Peter, Skantze Gabriel

机构信息

Furhat Robotics AB, Stockholm, Sweden.

Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.

出版信息

Front Robot AI. 2023 Dec 1;10:1271610. doi: 10.3389/frobt.2023.1271610. eCollection 2023.

Abstract

Affective behaviors enable social robots to not only establish better connections with humans but also serve as a tool for the robots to express their internal states. It has been well established that emotions are important to signal understanding in Human-Robot Interaction (HRI). This work aims to harness the power of Large Language Models (LLM) and proposes an approach to control the affective behavior of robots. By interpreting emotion appraisal as an Emotion Recognition in Conversation (ERC) tasks, we used GPT-3.5 to predict the emotion of a robot's turn in real-time, using the dialogue history of the ongoing conversation. The robot signaled the predicted emotion using facial expressions. The model was evaluated in a within-subjects user study ( = 47) where the model-driven emotion generation was compared against conditions where the robot did not display any emotions and where it displayed incongruent emotions. The participants interacted with the robot by playing a card sorting game that was specifically designed to evoke emotions. The results indicated that the emotions were reliably generated by the LLM and the participants were able to perceive the robot's emotions. It was found that the robot expressing congruent model-driven facial emotion expressions were perceived to be significantly more human-like, emotionally appropriate, and elicit a more positive impression. Participants also scored significantly better in the card sorting game when the robot displayed congruent facial expressions. From a technical perspective, the study shows that LLMs can be used to control the affective behavior of robots reliably in real-time. Additionally, our results could be used in devising novel human-robot interactions, making robots more effective in roles where emotional interaction is important, such as therapy, companionship, or customer service.

摘要

情感行为使社交机器人不仅能够与人类建立更好的联系,还能作为机器人表达其内部状态的工具。众所周知,情感对于人机交互(HRI)中的信号理解非常重要。这项工作旨在利用大语言模型(LLM)的力量,并提出一种控制机器人情感行为的方法。通过将情感评估解释为对话中的情感识别(ERC)任务,我们使用GPT-3.5根据正在进行的对话的历史记录实时预测机器人轮次的情感。机器人使用面部表情来传达预测的情感。该模型在一项受试者内用户研究(n = 47)中进行了评估,在该研究中,将模型驱动的情感生成与机器人不显示任何情感以及显示不一致情感的情况进行了比较。参与者通过玩专门设计用于引发情感的卡片分类游戏与机器人进行交互。结果表明,大语言模型能够可靠地生成情感,并且参与者能够感知到机器人的情感。研究发现,表达与模型驱动一致的面部情感表情的机器人被认为更具人类特征、在情感上更恰当,并能引发更积极的印象。当机器人显示一致的面部表情时,参与者在卡片分类游戏中的得分也显著更高。从技术角度来看,该研究表明大语言模型可用于实时可靠地控制机器人的情感行为。此外,我们的研究结果可用于设计新颖的人机交互方式,使机器人在情感交互重要的角色中更有效,如治疗、陪伴或客户服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d9/10722897/66ef55ef9357/frobt-10-1271610-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验