文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

数据数量和图像缩放对深度学习训练的影响。

Effects of data count and image scaling on Deep Learning training.

作者信息

Hirahara Daisuke, Takaya Eichi, Takahara Taro, Ueda Takuya

机构信息

Department of AI Research Lab, Harada Academy, Kagoshima, Kagoshima, Japan.

School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.

出版信息

PeerJ Comput Sci. 2020 Nov 16;6:e312. doi: 10.7717/peerj-cs.312. eCollection 2020.


DOI:10.7717/peerj-cs.312
PMID:33816963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7924688/
Abstract

BACKGROUND: Deep learning using convolutional neural networks (CNN) has achieved significant results in various fields that use images. Deep learning can automatically extract features from data, and CNN extracts image features by convolution processing. We assumed that increasing the image size using interpolation methods would result in an effective feature extraction. To investigate how interpolation methods change as the number of data increases, we examined and compared the effectiveness of data augmentation by inversion or rotation with image augmentation by interpolation when the image data for training were small. Further, we clarified whether image augmentation by interpolation was useful for CNN training. To examine the usefulness of interpolation methods in medical images, we used a Gender01 data set, which is a sex classification data set, on chest radiographs. For comparison of image enlargement using an interpolation method with data augmentation by inversion and rotation, we examined the results of two- and four-fold enlargement using a Bilinear method. RESULTS: The average classification accuracy improved by expanding the image size using the interpolation method. The biggest improvement was noted when the number of training data was 100, and the average classification accuracy of the training model with the original data was 0.563. However, upon increasing the image size by four times using the interpolation method, the average classification accuracy significantly improved to 0.715. Compared with the data augmentation by inversion and rotation, the model trained using the Bilinear method showed an improvement in the average classification accuracy by 0.095 with 100 training data and 0.015 with 50,000 training data. Comparisons of the average classification accuracy of the chest X-ray images showed a stable and high-average classification accuracy using the interpolation method. CONCLUSION: Training the CNN by increasing the image size using the interpolation method is a useful method. In the future, we aim to conduct additional verifications using various medical images to further clarify the reason why image size is important.

摘要

背景:使用卷积神经网络(CNN)的深度学习在各种图像应用领域取得了显著成果。深度学习能够自动从数据中提取特征,而CNN通过卷积处理来提取图像特征。我们假设使用插值方法增加图像大小会带来有效的特征提取。为了研究随着数据量增加插值方法如何变化,我们在训练图像数据较少时,检验并比较了通过翻转或旋转进行数据增强与通过插值进行图像增强的效果。此外,我们阐明了通过插值进行图像增强对CNN训练是否有用。为了检验插值方法在医学图像中的实用性,我们使用了胸部X光片上的Gender01数据集,这是一个性别分类数据集。为了将使用插值方法进行图像放大与通过翻转和旋转进行数据增强进行比较,我们检验了使用双线性方法进行两倍和四倍放大的结果。 结果:使用插值方法扩大图像大小提高了平均分类准确率。当训练数据数量为100时,提升最为显著,原始数据训练模型的平均分类准确率为0.563。然而,使用插值方法将图像大小增加四倍后,平均分类准确率显著提高到0.715。与通过翻转和旋转进行数据增强相比,使用双线性方法训练的模型在有100个训练数据时平均分类准确率提高了0.095,在有50000个训练数据时提高了0.015。胸部X光图像平均分类准确率的比较表明,使用插值方法具有稳定且较高的平均分类准确率。 结论:使用插值方法增加图像大小来训练CNN是一种有用的方法。未来,我们旨在使用各种医学图像进行更多验证,以进一步阐明图像大小为何重要的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/a25dc8d9ebe5/peerj-cs-06-312-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/8bb7490af953/peerj-cs-06-312-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/5953ed5856a8/peerj-cs-06-312-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/49413098a716/peerj-cs-06-312-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/22863123e0e2/peerj-cs-06-312-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/abd628c96ac3/peerj-cs-06-312-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/c4a1ac830060/peerj-cs-06-312-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/aa9ffcce2311/peerj-cs-06-312-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/4ea8d5b73203/peerj-cs-06-312-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/a25dc8d9ebe5/peerj-cs-06-312-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/8bb7490af953/peerj-cs-06-312-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/5953ed5856a8/peerj-cs-06-312-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/49413098a716/peerj-cs-06-312-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/22863123e0e2/peerj-cs-06-312-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/abd628c96ac3/peerj-cs-06-312-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/c4a1ac830060/peerj-cs-06-312-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/aa9ffcce2311/peerj-cs-06-312-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/4ea8d5b73203/peerj-cs-06-312-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b55/7924688/a25dc8d9ebe5/peerj-cs-06-312-g009.jpg

相似文献

[1]
Effects of data count and image scaling on Deep Learning training.

PeerJ Comput Sci. 2020-11-16

[2]
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.

Comput Methods Programs Biomed. 2017-3

[3]
Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques.

Injury. 2021-3

[4]
Human peripheral blood leukocyte classification method based on convolutional neural network and data augmentation.

Med Phys. 2019-11-22

[5]
Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model.

IEEE Open J Eng Med Biol. 2021-3-17

[6]
White blood cells detection and classification based on regional convolutional neural networks.

Med Hypotheses. 2020-2

[7]
Classification of neurofibromatosis-related dystrophic or nondystrophic scoliosis based on image features using Bilateral CNN.

Med Phys. 2021-4

[8]
Effect of dual-convolutional neural network model fusion for Aluminum profile surface defects classification and recognition.

Math Biosci Eng. 2022-1

[9]
A new deep learning pipeline to detect Covid-19 on chest X-ray images using local binary pattern, dual tree complex wavelet transform and convolutional neural networks.

Appl Intell (Dordr). 2021

[10]
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.

Asian Pac J Cancer Prev. 2019-11-1

引用本文的文献

[1]
SEMTWIST Quantification of Biofilm Infection in Human Chronic Wound Using Scanning Electron Microscopy and Machine Learning.

Adv Wound Care (New Rochelle). 2025-8

[2]
MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation.

J Proteome Res. 2025-5-2

[3]
Localization of early infarction on non-contrast CT images in acute ischemic stroke with deep learning approach.

Sci Rep. 2023-11-9

[4]
Nerve Root Compression Analysis to Find Lumbar Spine Stenosis on MRI Using CNN.

Diagnostics (Basel). 2023-9-18

[5]
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.

J Big Data. 2021

本文引用的文献

[1]
Improving Workflow Efficiency for Mammography Using Machine Learning.

J Am Coll Radiol. 2020-1

[2]
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.

Nat Biomed Eng. 2018-2-19

[3]
Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

Med Phys. 2017-8-31

[4]
Survey: interpolation methods in medical image processing.

IEEE Trans Med Imaging. 1999-11

[5]
Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules.

AJR Am J Roentgenol. 2000-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索