Suppr超能文献

基于网络的病毒-宿主相互作用预测及其在严重急性呼吸综合征冠状病毒2中的应用

Network-based virus-host interaction prediction with application to SARS-CoV-2.

作者信息

Du Hangyu, Chen Feng, Liu Hongfu, Hong Pengyu

机构信息

Department of Computer Science, Brandeis University, Waltham, MA 02453, USA.

出版信息

Patterns (N Y). 2021 May 14;2(5):100242. doi: 10.1016/j.patter.2021.100242. Epub 2021 Mar 29.

Abstract

COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has quickly become a global health crisis since the first report of infection in December of 2019. However, the infection spectrum of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a massive amount of underutilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2 and proteins of their hosts. More in-depth and more comprehensive analyses of that knowledge and data can shed new light on the molecular mechanisms underlying the COVID-19 pandemic and reveal potential risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. We developed a machine-learning-based method to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2 and 19 highly possible interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway.

摘要

由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的2019冠状病毒病自2019年12月首次报告感染以来,迅速成为一场全球健康危机。然而,SARS-CoV-2的感染谱及其与宿主在蛋白质水平上的全面相互作用仍不清楚。关于与SARS-CoV-2及其宿主蛋白质高度相关的RNA病毒,有大量未充分利用的数据和知识。对这些知识和数据进行更深入、更全面的分析,可以为2019冠状病毒病大流行的分子机制提供新的线索,并揭示潜在风险。在这项工作中,我们构建了一个多层病毒-宿主相互作用网络,以整合这些数据和知识。我们开发了一种基于机器学习的方法来预测蛋白质和生物体水平上的病毒-宿主相互作用。我们的方法揭示了SARS-CoV-2的五个潜在感染靶点,以及SARS-CoV-2蛋白与先天免疫途径中的人类蛋白之间的19种高度可能的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4676/8134947/b86e469a5225/gr1.jpg

相似文献

1
Network-based virus-host interaction prediction with application to SARS-CoV-2.
Patterns (N Y). 2021 May 14;2(5):100242. doi: 10.1016/j.patter.2021.100242. Epub 2021 Mar 29.
2
SARS-CoV-2-human protein-protein interaction network.
Inform Med Unlocked. 2020;20:100413. doi: 10.1016/j.imu.2020.100413. Epub 2020 Aug 13.
3
A robust protein language model for SARS-CoV-2 protein-protein interaction network prediction.
Artif Intell Med. 2023 Aug;142:102574. doi: 10.1016/j.artmed.2023.102574. Epub 2023 May 6.
6
Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments.
Curr Mol Med. 2022;22(7):621-639. doi: 10.2174/1566524021666211013121831.
8

引用本文的文献

1
Computational Analysis of Virus-Host Interactomes.
Methods Mol Biol. 2025;2940:79-91. doi: 10.1007/978-1-0716-4615-1_8.
3
A robust protein language model for SARS-CoV-2 protein-protein interaction network prediction.
Artif Intell Med. 2023 Aug;142:102574. doi: 10.1016/j.artmed.2023.102574. Epub 2023 May 6.
4
MP-VHPPI: Meta predictor for viral host protein-protein interaction prediction in multiple hosts and viruses.
Front Med (Lausanne). 2022 Nov 16;9:1025887. doi: 10.3389/fmed.2022.1025887. eCollection 2022.
6
Accurate prediction of virus-host protein-protein interactions via a Siamese neural network using deep protein sequence embeddings.
Patterns (N Y). 2022 Jul 31;3(9):100551. doi: 10.1016/j.patter.2022.100551. eCollection 2022 Sep 9.
7
Prediction of viral-host interactions of COVID-19 by computational methods.
Chemometr Intell Lab Syst. 2022 Sep 15;228:104622. doi: 10.1016/j.chemolab.2022.104622. Epub 2022 Jul 21.
8
SARS-CoV-2 host prediction based on virus-host genetic features.
Sci Rep. 2022 Mar 17;12(1):4576. doi: 10.1038/s41598-022-08350-6.
9
Drug repurposing for coronavirus (SARS-CoV-2) based on gene co-expression network analysis.
Sci Rep. 2021 Nov 8;11(1):21872. doi: 10.1038/s41598-021-01410-3.
10
Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization.
Front Genet. 2021 Oct 7;12:749256. doi: 10.3389/fgene.2021.749256. eCollection 2021.

本文引用的文献

3
Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.
Science. 2021 Jan 8;371(6525):172-177. doi: 10.1126/science.abe5901. Epub 2020 Nov 10.
4
The Structure of the Membrane Protein of SARS-CoV-2 Resembles the Sugar Transporter SemiSWEET.
Pathog Immun. 2020 Oct 19;5(1):342-363. doi: 10.20411/pai.v5i1.377. eCollection 2020.
5
SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study.
Lancet Microbe. 2020 Sep;1(5):e218-e225. doi: 10.1016/S2666-5247(20)30089-6. Epub 2020 Jul 7.
6
SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists.
Emerg Microbes Infect. 2020 Dec;9(1):1418-1428. doi: 10.1080/22221751.2020.1780953.
8
Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection.
Microbiol Resour Announc. 2020 May 28;9(22):e00468-20. doi: 10.1128/MRA.00468-20.
9
Pathogenesis and transmission of SARS-CoV-2 in golden hamsters.
Nature. 2020 Jul;583(7818):834-838. doi: 10.1038/s41586-020-2342-5. Epub 2020 May 14.
10
Infection of dogs with SARS-CoV-2.
Nature. 2020 Oct;586(7831):776-778. doi: 10.1038/s41586-020-2334-5. Epub 2020 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验