Du Hangyu, Chen Feng, Liu Hongfu, Hong Pengyu
Department of Computer Science, Brandeis University, Waltham, MA 02453, USA.
Patterns (N Y). 2021 May 14;2(5):100242. doi: 10.1016/j.patter.2021.100242. Epub 2021 Mar 29.
COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has quickly become a global health crisis since the first report of infection in December of 2019. However, the infection spectrum of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a massive amount of underutilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2 and proteins of their hosts. More in-depth and more comprehensive analyses of that knowledge and data can shed new light on the molecular mechanisms underlying the COVID-19 pandemic and reveal potential risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. We developed a machine-learning-based method to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2 and 19 highly possible interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的2019冠状病毒病自2019年12月首次报告感染以来,迅速成为一场全球健康危机。然而,SARS-CoV-2的感染谱及其与宿主在蛋白质水平上的全面相互作用仍不清楚。关于与SARS-CoV-2及其宿主蛋白质高度相关的RNA病毒,有大量未充分利用的数据和知识。对这些知识和数据进行更深入、更全面的分析,可以为2019冠状病毒病大流行的分子机制提供新的线索,并揭示潜在风险。在这项工作中,我们构建了一个多层病毒-宿主相互作用网络,以整合这些数据和知识。我们开发了一种基于机器学习的方法来预测蛋白质和生物体水平上的病毒-宿主相互作用。我们的方法揭示了SARS-CoV-2的五个潜在感染靶点,以及SARS-CoV-2蛋白与先天免疫途径中的人类蛋白之间的19种高度可能的相互作用。