Suppr超能文献

SARS-CoV-2 进化适应宿主进入和识别病毒-宿主相互作用中受体 O-乙酰神经氨酸糖基化。

SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction.

机构信息

Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.

Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea.

出版信息

Int J Mol Sci. 2020 Jun 26;21(12):4549. doi: 10.3390/ijms21124549.

Abstract

The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9--acetyl-SAs but switched to recognizing the 4--acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9--Ac-SAs and type II HE is specific for 4--Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4--acetyl binding from 9--acetyl SA binding is caused by protein-carbohydrate interaction (PCI) or lectin-carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9--Ac-SA-specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA-ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di--Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9--Ac-SA (type I) and the exclusive 4--Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein-glycan interaction and PCI stereochemistry potentiate the SA-ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.

摘要

最近出现的严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)是导致 2019 年冠状病毒病(COVID-19)大流行的全球卫生危机的原因。虽然冠状病毒疫情类似于流感病毒,但目前还没有关于冠状病毒感染宿主的证据,流感病毒使用唾液酸(SA)。目前,关于 SARS-CoV-2 及其受体的信息有限。O-乙酰化的 SA 与 SARS-CoV-2 的类血凝素刺突糖蛋白相互作用,使病毒最初附着到宿主细胞上。SARS-CoV-2 的血凝素-酯酶(HE)作为经典的糖结合凝集素和受体降解酶。大多数 β-CoV 识别 9-O-乙酰-SA,但在 CoV 的进化过程中转变为识别 4-O-乙酰-SA 形式。I 型 HE 特异性识别 9-O-乙酰-SA,而 II 型 HE 特异性识别 4-O-乙酰-SA。SA 结合的转变是通过凝集素和酯酶结构域的 SA 识别位点的准同步适应进行的。HE 从 9-O-乙酰 SA 结合获得 4-O-乙酰结合的能力的分子转换是由蛋白质-碳水化合物相互作用(PCI)或凝集素-碳水化合物相互作用(LCI)引起的。HE 基因通过水平基因转移从 9-O-乙酰-SA 特异性 HEF 转移到 β-CoV 谱系 A 祖先进化而来,就像在流感病毒 C/D 中一样。HE 的获得和扩张是通过 HE 进化的跨物种传播发生的。这反映了病毒对宿主含 SA 聚糖的适应性进化。因此,冠状病毒 HE 受体的转换先于病毒进化,由宿主 SA 聚糖的多样性驱动。PCI 或 LCI 立体化学通过凝集素和酯酶结构域的简单构象变化增强 SA-配体的转换。因此,对新出现的病毒的检查可以使我们更好地了解病毒向过渡宿主嗜性的进化。在 BCoV HE 中发现了一个明确的 HE 基因转移的例子,它更喜欢 7,9-二-O-乙酰-SA,这也是牛 Torovirus HE 的靶标。在鼠科 CoVs 中发生了一个更令人兴奋的这种转换事件的例子,β-CoV 谱系 A 型与两种不同的典型 9-O-乙酰-SA(I 型)和专有的 4-O-乙酰-SA(II 型)附着因子结合。I 型和 II 型 HE 的蛋白质结构数据也暗示了病毒从结合 9-O-乙酰 SA 转换为结合 4-O 乙酰 SA。蛋白质-聚糖相互作用的原理和 PCI 立体化学通过凝集素和酯酶结构域的简单构象变化增强 SA-配体的转换。因此,我们对自然适应的理解可以具体到碳水化合物/聚糖识别蛋白/分子如何促进病毒向宿主嗜性的进化。在目前缺乏可靠的抗病毒治疗或疫苗工具的情况下,正在进行几项试验来检查病毒制剂。不出所料,目前正在针对 SARS-CoV-2 的结构和非结构蛋白进行病毒治疗靶点的鉴定和开发。然而,现代全球社会需要针对感染患者的 SARS-CoV-2 预防和治疗药物。在这篇综述中,讨论了 SARS-CoV-2 的结构和唾液酸生物学,以鼓励和激活公众在不久的将来进行基于聚糖特异性相互作用的药物创制的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/7352545/2029d37762d5/ijms-21-04549-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验