Suppr超能文献

使用 Slice-O-Matic 和 Horos 进行人体成分分析的分割和线性测量。

Segmentation and Linear Measurement for Body Composition Analysis using Slice-O-Matic and Horos.

机构信息

Department of Urology, Emory University School of Medicine.

Northeast Ohio Medical University.

出版信息

J Vis Exp. 2021 Mar 21(169). doi: 10.3791/61674.

Abstract

Body composition is associated with risk of disease progression and treatment complications in a variety of conditions. Therefore, quantification of skeletal muscle mass and adipose tissues on Computed Tomography (CT) and/or Magnetic Resonance Imaging (MRI) may inform surgery risk evaluation and disease prognosis. This article describes two quantification methods originally described by Mourtzakis et al. and Avrutin et al.: tissue segmentation and linear measurement of skeletal muscle. Patients' cross-sectional image at the midpoint of the third lumbar vertebra was obtained for both measurements. For segmentation, the images were imported into Slice-O-Matic and colored for skeletal muscle, intramuscular adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue. Then, surface areas of each tissue type were calculated using the tag surface area function. For linear measurements, the height and width of bilateral psoas and paraspinal muscles at the level of the third lumbar vertebra are measured and the calculation using these four values yield the estimated skeletal muscle mass. Segmentation analysis provides quantitative, comprehensive information about the patients' body composition, which can then be correlated with disease progression. However, the process is more time-consuming and requires specialized training. Linear measurements are an efficient and clinic-friendly tool for quick preoperative evaluation. However, linear measurements do not provide information on adipose tissue composition. Nonetheless, these methods have wide applications in a variety of diseases to predict surgical outcomes, risk of disease progression and inform treatment options for patients.

摘要

人体成分与多种疾病的进展和治疗并发症相关。因此,在计算机断层扫描(CT)和/或磁共振成像(MRI)上对骨骼肌量和脂肪组织进行定量分析,可能有助于评估手术风险和预测疾病预后。本文介绍了由 Mourtzakis 等人和 Avrutin 等人最初描述的两种定量方法:组织分割和骨骼肌线性测量。对患者第 3 腰椎中点的横断面图像进行这两种测量。对于分割,将图像导入 Slice-O-Matic 并对骨骼肌、肌内脂肪组织、内脏脂肪组织和皮下脂肪组织进行着色。然后,使用标签表面积功能计算每种组织类型的表面积。对于线性测量,测量第 3 腰椎水平双侧腰大肌和竖脊肌的高度和宽度,并使用这四个值进行计算,得出估计的骨骼肌质量。分割分析提供了有关患者身体成分的定量、全面的信息,然后可以将其与疾病进展相关联。然而,该过程更耗时,需要专门的培训。线性测量是一种用于快速术前评估的高效、适合临床的工具。然而,线性测量不能提供脂肪组织组成的信息。尽管如此,这些方法在多种疾病中具有广泛的应用,可用于预测手术结果、疾病进展风险,并为患者提供治疗选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验